
Ada Numerica (1998), pp. 287-336 © Cambridge University Press, 1998

Direct search algorithms for
optimization calculations

M. J. D. Powell
Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, Silver Street,
Cambridge CBS 9EW, England.
E-mail: m j dpOdamtp. cam. ac. uk

Many different procedures have been proposed for optimization calculations
when first derivatives are not available. Further, several researchers have
contributed to the subject, including some who wish to prove convergence
theorems, and some who wish to make any reduction in the least calculated
value of the objective function. There is not even a key idea that can be used
as a foundation of a review, except for the problem itself, which is the adjust-
ment of variables so that a function becomes least, where each value of the
function is returned by a subroutine for each trial vector of variables. There-
fore the paper is a collection of essays on particular strategies and algorithms,
in order to consider the advantages, limitations and theory of several tech-
niques. The subjects addressed are line search methods, the restriction of
vectors of variables to discrete grids, the use of geometric simplices, conjugate
direction procedures, trust region algorithms that form linear or quadratic
approximations to the objective function, and simulated annealing. We study
the main features of the methods themselves, instead of providing a catalogue
of references to published work, because an understanding of these features
may be very helpful to future research.

CONTENTS

1 Introduction
2 Line search methods
3 Discrete grid methods
4 Simplex methods
5 Conjugate direction methods
6 Linear approximation methods
7 Quadratic approximation methods
8 Simulated annealing
9 Discussion
References

288
289
293
298
304
310
317
323
329
335

288 M. J. D. POWELL

1. Introduction

I have contributed several Fortran subroutines for optimization calculations
to IMSL (International Mathematical and Statistical Libraries), assuming
that the gradient of the objective function is available. Then, in all cases,
IMSL produced versions of them that make difference approximations to de-
rivatives automatically, as many of its customers would have gone elsewhere
if they had been asked to specify the first derivatives. I did not include the
difference approximations myself, because I was aware that they could cause
disastrous loss of accuracy in pathological cases, nor did I object strongly
to the expediency of IMSL, because I wanted my software to be employed
for a wide range of applications. Thus, about ten years ago, the demand
from many computer users for numerical methods for optimization was met
in an imperfect way that was usually adequate. The main reason for our
work is to show that there are still many opportunities for improvements to
optimization algorithms that do not require derivatives.

Another fundamental objection to difference approximations, in addition
to loss of accuracy due to cancellation and division by small numbers, is
that each gradient vector is replaced by a tight cluster of at least n + 1
function values, where n is the number of variables. Instead, it seems more
suitable, intuitively, to spread out the points at which the objective function
is calculated, especially if sample values have to be taken from many parts
of the space of the variables. Furthermore, when the values include some
random noise, then the contribution from the noise to predicted rates of
change is less if the evaluation points are widely spaced. Therefore this
paper addresses algorithms for optimization that are basically different from
the ones that employ gradients. On the other hand, the computer user who
requires the best algorithm for his or her application should keep in mind
the possibilities of difference approximations and automatic differentiation.

We let x E W1 denote a typical vector of variables, and we reserve the
notation

F(x), xeSCRn, (1.1)

for the objective function, where S may be a subset of M.n if constraints
are present. Further, letting X be the set of points in M.n at which the
constraints are satisfied, we assume XC.S. The optimization problem under
consideration is to seek a vector x* EX that has the property

F(x*)<F(x), x£X, (1.2)

using calculated values of F(x) and any constraint functions at points x that

are chosen automatically. Most of the available algorithms, however, are for
the case when the variables are unconstrained. Therefore we follow the
usual recourse of mentioning that penalty and barrier function techniques
have been developed that replace constrained calculations by unconstrained

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 289

ones, good descriptions of them being given in the books by Fletcher (1987)
and Gill, Murray and Wright (1981). This approach, unfortunately, usually
reduces the precision of the information on the final values of the vari-
ables that is provided by explicit constraints. Therefore research on new
algorithms for nonlinear constraints without the calculation of derivatives
could be important to a wide range of applications. We note also that
there are some serious deficiencies in the current methods for unconstrained
optimization.

Three main techniques are employed for trying to achieve global conver-
gence, namely line searches, trust regions and discrete grids. The suitability
of line searches and discrete grids for this purpose is addressed in Sections 2
and 3, respectively, but trust region algorithms are not studied until Sec-
tions 6 and 7, as they require approximations to F(x), # G R™. Section 4
considers simplex methods, including the procedure of Nelder and Mead
(1965), because citation indexes show that it is the method of choice for
many applications. Fast convergence is often achieved by algorithms that
are designed to be highly efficient when the objective function is quadratic.
Therefore the use of conjugate directions is the subject of Section 5. In
Section 6, linear approximations are made to F(x), x G M.n, and to any
constraint functions, which give a highly convenient and slow procedure for
small numbers of variables. Some of the inefficiencies can be removed by
quadratic approximations, as described in Section 7, but current procedures
of this kind do not allow nonlinear constraints explicitly. Moreover, some
methods make random changes to the variables, including simulated anneal-
ing, which is considered in Section 8. Finally, in Section 9, we discuss the
convergence properties, the limitations, and some possible developments of
the given techniques for minimization without derivatives.

2. Line search methods

Line search methods for unconstrained optimization are iterative, a starting
vector of variables x± G W1 has to be given, and, for k = 1,2,3,..., the
A;th iteration derives xfc+1 from xk in the following way. A nonzero search
direction dk G En is chosen. Then the function of one variable (f)(a) =
F(xk + adk), a e l , receives attention, in order to pick a new vector of
variables of the form

xk + akdk. (2.1)

For example, an 'exact line search' would set the step-length ak to an a that
minimizes (f)(a). In practice, however, one tries to choose ak in a way that
requires very few values of F(xk + adk), a e R , on each iteration, and it is
usual to satisfy the condition

F(xk+1) < F(xk), fc = l , 2 , 3 , (2.2)

290 M. J. D. POWELL

Of course the search directions should be able to explore the full space
of the variables. Therefore line search methods should have the property
that, for some integer £>n, any £ consecutive search directions span M.n in a
strict sense. If this condition failed, then a nonzero w G f would be (nearly)
orthogonal to the directions. Therefore a convenient form of the strict sense
is that the bound

max{\vTdj\/\\dj\\2:j = k-£+l,k-£+2,...,k}>c\\v\\2, v€Rn, (2.3)

is satisfied for k > £, where c is a positive constant. For example, a way of
achieving this condition, which gives £ = n and c = n~1/2, is to let each dk

be a coordinate direction in Rn, and to cycle round the n coordinate dir-
ections recursively as k increases. Rosenbrock (1960) provides an extension
of this technique that is sometimes useful. His first n directions are also
the coordinate directions, but, when A; is any positive integer multiple of n,
then, before starting the (k+l)th iteration, he generates dk+1,dk+2, • • • ,dk+n

in sequence, by applying the Gram-Schmidt procedure to the differences
x.k+1 ~%-k-n+ji i = 1) 2 , . . . , n. Further, he ensures that every step-length is
nonzero, although condition (2.2) may have to fail. Some other choices of
search directions are given in Section 5.

Unfortunately, condition (2.3) and exact line searches do not guarantee
that limit points of the sequence xk, k = 1,2, 3 , . . . , are good estimates of
optimal vectors of variables, even if the objective function is continuously
differentiable, and the level set {x : F(x) < i?(x1)} is bounded. Indeed,
Powell (1973) gives an example of bad behaviour, with n = 3 and exact line
searches, where the sequence dk, k = 1, 2, 3 , . . . , is generated by cycling round
the coordinate directions, as mentioned in the previous paragraph. Here, for
each integer i in [1,6], the infinite sequence x6j+i, j = 1, 2 ,3 , . . . , tends to
one vertex of a cube, and the path from xk to xk+6 tends to be a cycle along
six edges of the cube. Further, the objective function is constant on each
of these edges, which implies that two components of the gradient V F are
zero at each limiting vertex. The other component of VF(xfc), however, is
bounded away from zero for each k. It follows that the calculated vectors
of variables do not approach a stationary point of F. Therefore it is easy
to modify the algorithm so that the objective function becomes less than
the actual limit of the decreasing sequence F(xk), k—>oo. Specifically, we
replace d- by a difference approximation to - V F (x ;) for any integer j that
is sufficiently large. Furthermore, we find in the remainder of this section
that there is another remedy that does not require an estimate of V_F.

The kind of ingredient that avoids the bad behaviour above is imposing the
condition that, if ||sfc+i^fc|| is bounded away from zero, then F(xk)—F(x_k+1)
is bounded away from zero too. Hence, in the usual case when F(xk),

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 291

fc = l ,2 ,3 , . . . , converges monotonically, we have the limit

\\xk+i-xk\\^0 as A;-̂ oo, (2.4)

which prevents the cycling round the edges of the cube in the example
of the previous paragraph. Further, if the directions d-, j = 1,2,3,...,
satisfy inequality (2.3), and if x* is any limit point of the infinite sequence
xk, k = 1,2,3,..., then V_F(x*) = 0 can be obtained by a suitable line
search, provided that F is continuously differentiable and bounded below.
We are going to prove this assertion, not only because the restriction on
ll̂ fc+i ~ %k\\

 m a y De valuable to future algorithms, but also because the
method of proof provides a demonstration of the kind of analysis that can
establish convergence properties. A way of achieving the restriction, due to
Lucidi and Sciandrone (1997), will be given after the proof.

We aim to deduce a contradiction from the assumption ||V.F(x*)||2 = r],
where rj is a positive constant and where x* is a limit point of the sequence
xk, k = 1, 2 ,3 , . . . , as stated already. We seek some integers j such that
¥-F(Xj)Tdj/\\dj\\2 is bounded away from zero, because then the step-length
ctj of the equation x J + 1 =Xj + ajdj can be chosen so that F(XJ) — F(x_j+±)
is also bounded away from zero, which gives the required contradiction if
this happens an infinite number of times. Now, by setting v = V.F(x*) in
expression (2.3), we deduce that the inequality

\VF(x*)%\ I \\djh > c \\VF(x*)\\2 = cr) (2.5)

is achieved at least once for every £ consecutive positive integers j . Further,
because VF is continuous, this inequality implies \V_F(xj)Tdj\/\\dj\\2> \cr),
provided that x,- is sufficiently close to x*. Specifically, x, is close enough to
x* if it satisfies \\XJ — x*\\2 < e, where e is a positive constant that provides
the property

| |VF(x)-yF(x*)| |2<±c77 if | | x -x* | | 2 <e , (2.6)

because then the Cauchy-Schwarz inequality and condition (2.5) give the
bound

II%II2
 3 - " u^~

Therefore it remains to show that, on an infinite number of occasions, £
consecutive positive integers j satisfy ||XJ — x*||2 < £• The limit (2.4) is
helpful, because it admits an integer jo > 0 such that ||xJ+1—Xj ||2 < \e/{£—l)
holds for all j > jo. Hence, if ||xfc—x* ||2 < \e occurs for some integer k>jo,
then ||x—x*||2 < e is obtained by every integer j in [k, k + £ — 1]. This
does happen an infinite number of times, because x* is a limit point of xk,
k = 1,2, 3 , . . . , even if we require the differences between the chosen integers
k to be at least £. The proof is complete.

292 M. J. D. POWELL

The line search procedure in Section 5 of Lucidi and Sciandrone (1997) is
suitable for the above analysis, although some parameters are required that
may be difficult to choose well in practice. They are numbers 7 and 6 that
satisfy 7 > 0 and 0 < 6 < 1, and a positive sequence {(3k : k — 1,2,3,...}
that tends to zero as k—>oo. Then, on each iteration, there is a search for
a step-length ak = a that has the properties

F(xk+adk)<F(xk)-ia
2\\dk\\

2
2 and 1

ram[F(xk+adk),F(xk-adk)}>F(xk)-7a
2\\dk\\l J '

where a = a/6. If the first line of expression (2.8) holds for a trial a > 0, then
either a is acceptable or the second line shows that a step-length of larger
modulus is allowed by the first line, namely a/6 or —a/6. Thus the modulus
of a is increased if necessary, and the second line is tested for the new a.
This procedure is continued recursively until a is acceptable, which happens
eventually because we are assuming that F is bounded below. Alternatively,
if the first line of expression (2.8) fails, not only for the initial a but also for
—a, then a is replaced by a6 and these tests are tried again. Thus the second
inequality of expression (2.8) is achieved by the new a. Again recursion is
applied, either until an acceptable step-length is found or until ||adfc||2</3fc
occurs, the choice ak = 0 being made in the latter case. Moreover, the search
directions dk, k = 1,2, 3 , . . . , have to satisfy the strict linear independence
condition (2.3). These constructions provide the conclusion VF(x*) = 0 of
the previous paragraph, as shown below.

The first line of expression (2.8) and equation (2.1) imply the bound

F{xk)-F{xk+1)>1\\xk-xk+1\\l fc = l , 2 , 3 , . . . , (2.9)

when ak is positive, and the bound is trivial when ak is zero. Therefore the
limit (2.4) at the beginning of the given analysis is valid, and the conclusion
V.F(x*) = 0 of the analysis holds, provided that inequality (2.7) causes
F(XJ) — F(x_j+1) to be bounded away from zero. Further, the method of
analysis allows us to restrict attention to values of j that satisfy two more
conditions. Firstly, we assume j>jo, where jo is any fixed positive integer,
which may be larger than the jo introduced earlier. Thus we allow for the
zero step-lengths in the line search procedure under consideration. Secondly,
we assume \\XJ—%*\\2 <£, although our previous use of this bound was only to
establish the existence of integers j that have the property (2.7). Thus the
uniform continuity of V_F in any neighbourhood of x* provides the condition

if | | z - z J 2 < £ , (2.10)

for all of the values of j that are retained, where e is a positive number that
is independent of j .

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 293

Now it follows from expressions (2.7) and (2.10) that the gradient of the
line search function (f>(a) = F(xj+adj), a G i , is bounded by the inequality

> \cn\\dj\\2 if | | a ^ | | 2 < e . (2.11)

Therefore, by choosing the sign of a to be opposite to the sign of </>'(0) and
by applying c/)(a) = /Q

a <fi'(6) d9, we find the relation

Fixj+adJ^FixJ-lcnWadjlh if \\adjh < i. (2.12)

Thus the first line of expression (2.8) is achieved by every a of the appropri-
ate sign that satisfies ||ad,-||2 <£ and 7 ||a<L||2 < \crj- It follows that, if the
parameter (3j of the line search procedure is at most 6min[e, \cr)/i\, and if
the first trial value of a on the jth iteration is at least j3j, then the procedure
provides a step-length ay that is positive. The first of these conditions is
irrelevant if jo is sufficiently large, as assumed in the previous paragraph,
and any sensible implementation observes the second condition. Therefore
both of the inequalities (2.8) hold for k=j with a = ctj>0. We deduce from
the second one and from the property (2.12) that ||adj||2 = | | « j^ | | 2 /^ is no
less than min[e, \cq/^\, which gives the inequality

k j + i - ^ - l b = IK^j lh > <5min[£, 3077/7]. (2.13)

Thus condition (2.9) provides a positive lower bound on F(x_j) — F(XJ+1)

as required. Therefore line search methods without derivatives can provide
convergence properties of the kind that are acclaimed by theoreticians when
F(x), i g l " , need not be convex. Some further work on these questions,
including new line search procedures, can be found in Grippo, Lampariello
and Lucidi (1988) and in Lucidi and Sciandrone (1997).

3. Discrete grid methods

We introduce discrete grid methods by considering a simple procedure in
the case when the components of x G R" are bounded by the constraints

a,i<Xi<bi, i = l,2,...,n, (3.1)

for given values of a, and 6j that satisfy a» < 6j, i = l , 2 , . . . , n . For each i, a
mesh size hi = (bi — o,)/U{ is chosen for some positive integer 1 ,̂ and we let
Q be the finite rectangular grid "

G = {x:hr1(xi-ai)€Zr\[0,ui], i = l,2,...,n}, (3.2)

294 M. J. D. POWELL

where Z denotes the set of integers. Let an iterative algorithm that seeks the
least value of F(x), x€zG, be given a starting point xx €<?, and let the kth
iteration for each k calculate xk+1 € Q in a way that satisfies the condition

F(xk+l) < F(xk), fc = l , 2 , 3 , (3.3)

Further, let the algorithm terminate if any i consecutive iterations fail to
reduce the objective function, where £ is a prescribed positive integer. Then
the finiteness of Q guarantees that termination occurs. A reason for mak-
ing this remark is to provide a contrast with the details of the analysis of
convergence in the previous section.

An obvious algorithm of this type generates xk+1 by trying to improve
only one component of xk on the kth iteration, so it makes searches along
the coordinate directions ei: i = 1,2,.. . , n, where the ith component of et

is one and all the other components are zero. It is usual to cycle round
these directions recursively as before, letting the search direction of the kth
iteration be e ,̂ where z € [l,n] is defined by the condition that (k — i)/n is
an integer. Further, let the step-length of the kth iteration be chosen so
that the strict reduction F(xk+1) < F(xk) occurs if xk+1 ^xk, and so that
X-k+i ^ G n a s the properties

F(x*+i) < Fixt+i-hiei) and F(xk+1) < F(xk+l + hi^), (3.4)

except that the first or second of these conditions is dropped it xk+1 — hiei
o r •OLk+i^'h'i&i' respectively, is outside the feasible region, due to the ith
component of xk+l being a, or &,. Thus, if x* G Q is the vector of variables
that is provided by the algorithm at termination, because £ = n iterations
have not reduced F, then the inequality

F(x*) < F(x), xeN(x*), (3.5)

is satisfied, where J\f(x*) is the set of points of Q that are neighbours of x*
along coordinate directions, and we include x* in Af(x*) too.

Another grid search algorithm that achieves condition (3.5) is proposed
by Hooke and Jeeves (1961). It is usually more efficient than the method
of the previous paragraph, because it can generate helpful changes to the
variables that are not along coordinate directions. Again x_x G Q is given,
but the A;th iteration derives xk+1 from xk in the following way. If k > 2
and if the vector y,=2xk—xk_1 satisfies the constraints (3.1), which implies
y,£G, then the algorithm sets y* to a point in N(y.) that provides the least
value of F(x), xeJ\f(y_k), where JV(-) has been denned already. Further, if
F(y*) is strictly less than F(xk), then the choice xk+1 — y* is made. In
all other cases, however, the algorithm sets x*k to a point in M{xk) that
minimizes F(x), xeAf(xk), and xk+1 = x | is chosen if the strict inequality
F(xk) < F(xk) holds. Otherwise, termination occurs with x* equal to xk.
Thus the final vector of variables has the property (3.5) as claimed. We note

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 295

that the method is based on the hypothesis that, because the step from xk_l

to xk reduces the objective function, the displacement xk — xk_i from xk is
likely to provide a further reduction, especially if the new point is chosen to
be the best one in the set J\f(2xk—xk_1)=Af(y,).

When the objective function has continuous first derivatives, the property
(3.5) allows x* to be related to the first order conditions for a minimum of
F(x), x^X, where X is the set of points in M.n that satisfy the constraints
(3.1). These conditions are that, for each integer i in [l,n], the derivative
dF(x)/dxi is zero, nonnegative or nonpositive in the case a,i<Xi<bi, Xi = ai
or Xi = b{, respectively. Now, if x* + hi§.i is in the set M(x*), then the
property (3.5) includes the inequality F(x*) <-F(x* + /iieJ. Moreover, the
mean value theorem gives the equation

F{x*+hieJ = F(x*) + hidFix'+deJ/dxi, (3.6)

for some Q in [0, hi]. Thus the derivative dF{gc*+Ctiei)/dxi is nonnegative,
which implies the condition

dF(x*)/dxi > dF(x*)/dxi - dF(x*+Ciei)/dxi > -^(/i;), (3.7)

where ui is the modulus of continuity of dF(x)/dxi, x€X. Similarly, if
x* — hi^ is in N(x*), we deduce the bound dF(x*)/dxi<uJi(hi). It follows
that the modulus of the difference between the ith component of VF(z*)
and the iih component of a hypothetical gradient vector that satisfies the
first order conditions for optimality at x* is at most a>j(/ij) for i = 1, 2 , . . . , n.

This result suggests a useful extension of the grid methods described
already. It is to apply one of them until termination, and to repeat this pro-
cedure recursively, where the mesh sizes are reduced before each new step of
the recursion. Specifically, after calculating the vector x* = x*(hi, Ji2, • • •, hn)
that achieves the property (3.5) for the original mesh sizes, we might halve
all the mesh sizes, and then employ the algorithm to generate a new vector
x*, using the old x* as the starting point for the new calculation. If the
number of recursions is infinite, and if x* is any limit point of the sequence
x*(hi, h,2, • • •, hn) as max{/ij : i = l,2,...,n} tends to zero, then it follows
from the previous paragraph that x* satisfies the first order conditions for
the least value of F(x), iGX.

Of course there are analogous procedures for unconstrained calculations
and for the case when there are bounds on some but not all of the variables.
We continue to employ a rectangular grid Q in these cases, and to let hi
denote the mesh size in the ith. coordinate direction for each integer i in
[l,n]. Further, the starting point x_± is still required to be a grid point,
and we let its components be £,, i = 1,2,... ,n. Therefore x is a point of
Q if and only if it satisfies any constraints and if all the ratios (xi — £i)/hi,
i = l,2,..., n, are integers. These parameters should be chosen so that any
bound on x holds as an equation at some of the grid points. Then condition

296 M. J. D. POWELL

(3.5) can be achieved as before when the level set {x : F(x) ^ F ^) , x€X]
is bounded.

On the other hand, rectangular grid methods are hardly ever suitable for
constraints that are more general than the simple bounds (3.1). For example,
let n = 2, let F(x) = x\ + 2x2, x £ M2, let the constraints be —10 < xi < 10,
X2 < 10 and #1+0:2+ 10 > 0, let h\ — h2 = 1, and let the starting point x_x

be at the origin. Then Q includes many points on the boundary of X, and
the objective function can be reduced by decreases in x\ and #2- Thus it is
likely that a point with the coordinates (xi, — x\ —10) will be calculated for
some integer xi in [—10,0], because this point is on the boundary of the last
constraint. Here a decrease in x\ or X2 would violate the constraint, while
an increase in x\ or X2 would increase the value of the objective function.
Therefore termination is likely to occur with xx < 0, although the optimal
vector of variables is the grid point with the coordinates (10,-20). The
deficiency happens because further progress requires a search direction that
is along or close to the boundary of the last constraint, but the direction of
that boundary in R2 is very different from both of the coordinate directions.

If X1+X2 + IO > 0 were the only constraint on the variables in the above
example, then a linear change of variables y = Bx could be made, where
B i s a n n x n nonsingular matrix that provides y\ =x\+X2- Then any of
the methods described already could be applied to seek the least value of
F(B~1y) subject to y\ > —10. The notation B for the matrix of the change
of variables is taken from Torczon (1997), because she develops a general
convergence theory for discrete grid methods.

That work allows both increases and decreases in mesh sizes, assuming
that the variables are unconstrained and that the level set {x : F{x) < -F(xj)}
is bounded. We consider the technique when B is the unit matrix and
when the mesh sizes satisfy h\ = /12 = • • • = hn = h, say. The value of h
can be adjusted automatically, and we let its initial value be h — l. Then
the technique includes the following four important features. Firstly, every
mesh size is an integral power of a rational number r = (3/a < 1, where a
and (3 are prescribed positive integers that are relatively prime. Secondly,
if the kth iteration gives xfc+1 ^xk, then every component of the difference
Xk+i—xk is an integral multiple of the current h and the strict inequality
F(xk+l) < F(xk) is achieved. Thirdly, xk+1 =xk occurs only if x_k has the
property

Fix*) < F(x), xeNh{xk), (3.8)

where Mh is the J\f that has been defined already, the subscript denoting
the mesh size. Fourthly, the kth iteration does not reduce h if F(xk+l) is
less than F(xk), but otherwise the mesh size of the (k+l)th iteration is the
mesh size of the A;th iteration multiplied by r.

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 297

The main conclusion of Torczon (1997) is that, if the objective function
has continuous first derivatives and if the number of iterations is infinite,
then the given conditions imply the convergence property

liminf ||VF(xfc)||2 = 0. (3.9)
k—>oo

It can be proved by letting K. be the set of integers k such that the mesh size
of the (fc+l)th iteration is less than all previous mesh sizes, and by deducing
that the number of elements of K. is infinite. Indeed, if we suppose that \JC\
is finite, then we can let £ and m be integers such that every mesh size is
in the set {rl : i = £,£+l,... , m}, where £<0<m, the existence of £ being
due to the boundedness of the level set {x : F(x) <F(xi)}. It follows from
T = j3/a that, for every iteration number k, the components of the difference
2ifc+i~3Zi are integral multiples of the positive constant fi^aT™. Thus, due
to the boundedness of the level set, the monotonically decreasing sequence
{F(xk) : fc = 1,2,3,...} satisfies F(xk+1) <F(xk) for only a finite number of
values of k. Therefore there exists ko such that the kth iteration multiplies
h by r for all k>ko, which contradicts the hypothesis |/C| < oo. Hence the
sequence {xk : k G /C} is infinite. Further, the given conditions and choices
imply that, for every positive integer j , the j th element of this sequence
has the property (3.8) with h = T^~l. Thus the argument of the paragraph
containing expressions (3.6) and (3.7) gives the bound

idFix^/dxilKLUiiri-1), i = l,2,...,n. (3.10)

Therefore the infinite sequence {||V.F(zfc)||2 : k(ElC} converges to zero, which
completes the proof of the assertion (3.9).

This method of proof does not show, however, that a small value of
||VF(xfc)||2 is achieved by a number of iterations that is suitable for prac-
tical computation. For example, if r = 2/3, if /i«10~6 is needed to provide
adequate accuracy, and if h « 100 is the greatest mesh size that occurs,
then the formulae (2/3)34 = 1.03 x 10~6 and (3/2)11 = 86.5 imply that the
components of Xk+i"3a should be integral multiples of (l /3) 3 4 (l /2)u =
2.93 x 10~20 = r/min, say. Then it is crucial to the last paragraph that ?7min is
a positive constant, although its value is less than the usual relative precision
of computer arithmetic. Therefore it is hoped that there is no close relation
between performance in practice and the importance of the rationality of r
to the given analysis. A strong advantage of discrete grid methods is em-
phasized by Torczon (1997). It is that any trial step from xk to another grid
point is allowed by the convergence theory if it provides the strict inequality
F(xk+1) <F(xk). On the other hand, proofs of convergence of several other
algorithms require the reduction in the objective function to be 'sufficiently
large'.

298 M. J. D. POWELL

4. Simplex methods
A simplex is the convex hull of n+1 points in R™, where the points satisfy
the nondegeneracy condition that the volume of the hull is nonzero. This
condition is equivalent to the linear independence of the vectors Vi~Hi,
i = 2, 3 , . . . , n + 1, where v_i £ Rre> i = 1, 2, . . . ,n + l, are the n + 1 points.
Simplex methods for unconstrained optimization are iterative. A simplex is
available at the beginning of each iteration, and we let vt, i = 1,2,..., n+1,
be its vertices. Further, the values F(v_i), i = 1,2,..., n+1, of the objective
function are known. The iteration picks an integer m from [l,n+l] that is
usually defined by the property

i^fej > Ffe), i = 1,2,...,n+1, (4.1)
in order that F(vm) is the worst of the function values. Further, a new
vector of variables, vm say, is generated, a frequent choice being the point

n+1

^ - ^ , (4.2)

because v_m is on the straight line from vm through the centroid of the other
vertices. Then F(v_m) is calculated. Its value may allow the iteration to be
completed by letting the simplex for the next iteration be the current one,
except that vm *s replaced by vm. Another possibility is that vm may be
revised in a way that depends on the new function value, and then F(vm)
is required at the revised point. Moreover, it happens occasionally that the
new information causes the current simplex to shrink, in which case v_i is
overwritten by ^(Vi + v/) for i = 1, 2 , . . . , n +1, where £ is an integer from
[l,n+l] such that F(v/) is the least of the numbers F(v.i), z = l, 2, . . . ,n+l .
Thus the new current simplex has n new vertices, and the objective function
has to be calculated at all of them before the next iteration is begun.

The first algorithm of this kind was proposed by Spendley, Hext and Hims-
worth (1962). We consider a version of their method that employs formula
(4.2) on every iteration. If F(v_m) > F(vm) occurs, then the calculation is
terminated if the simplex has become sufficiently small, and otherwise the
iteration shrinks the simplex. Alternatively, when F(vm) is less than F(vm),
then the only modification to the current simplex for the next iteration is
the replacement of vm by ilm- A small departure from the procedure of the
previous paragraph assists the achievement of the condition F(vm) <F(vm).
Specifically, if the usual choice of m would cause the vector (4.2) to be the
vertex that was deleted from the previous simplex by the previous iteration,
then m is chosen to be an integer in [1, n+1] such that F(vm) is the second
largest of the numbers F(VJ), i = 1,2,..., n + 1. Thus the same value of m
is not picked by two consecutive iterations, unless a shrink is applied by the

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 299

earlier iteration. Furthermore, this algorithm has the property that every
simplex is regular if the initial simplex is regular, where a simplex is regular
if and only if all its edges have the same length.

The last remark is relevant to an analysis of convergence in the general
case. Indeed, let the method of the previous paragraph be applied for several
iterations to the function F(x), xGl" , where the simplex at the beginning
of the calculation has the vertices v\ , i — 1, 2 , . . . , n + l . Further, let w^ ,
i = 1,2,... ,n + l, be the vertices of any regular simplex in Rn, and then
define the nxn nonsingular matrix B by the equations

w^-wf^B^-v^), < = 2 ,3 , . . . ,n+l . (4.3)

We now consider applying the method of the last paragraph to the function
G(y) = F(v[+B~l {y—w\ }), ysR™, starting with the regular simplex just

mentioned. The identities G(w_\) = F(v\), i = l,2, . . . , n + l, imply that
the initial choice of m is the same as before. Thus, for the new calculation,
formula (4.2) provides the vector

n+l

w^ = (2/n)J2dO)-w^. (4.4)

Further, if Vm is the vector (4.2) that occurs on the first iteration of the
ina

(0)

original calculation, then w_m is related to v_m by the identity

n+l

+ B~1i(2/)S^(^ — ^) - (^ - ^
i=i

n+l

+ (2/n) Yiv^-v?) - (vM-vW) = v£\ (4.5)

It follows that the function values G(w_m) and F(vm) are the same. Hence
the simplex at the beginning of the second iteration of the new calculation
is related to the simplex at the beginning of the second iteration of the
old calculation by the change of variables y — w\ + B(x_ — y_\), x €. W1.
Further, it can be shown by induction that this relation is inherited by the
simplices of all iterations. Therefore, when analysing convergence, there
is no loss of generality in assuming that every simplex is regular. It can
be shown similarly that there is also no loss of generality in making any
nondegenerate choice of the initial simplex.

300 M. J. D. POWELL

One fundamental convergence question is whether the method of the sec-
ond paragraph of this section can continue indefinitely without any shrinks,
when the level set {x : F(x) < Fo} is bounded, where FQ is the largest of
the function values at the vertices of the initial simplex. The grid argument
of the previous section provides a negative answer when n = 2. Indeed, in
this case there is no loss of generality in letting the initial vertices have the
components v\ = (0,0), v2 = (1,0) and v^ = (0,1). Thus it follows from
formula (4.2) with n = 2 that, until the first shrink occurs, the components of
every vertex of every simplex are integers. Moreover, every iteration before
a shrink provides a strict reduction in the sum Y17=i ^ f e) ' where the points
Uj, i = l , 2 , . . . , n + l , are still the vertices of the current simplex. Therefore
the shrink is guaranteed by the remark that the number of different values
of this sum subject to the conditions F(Vi) <FQ and VjGZT1 is finite, where
Z" is the set of vectors in M.n whose components are integers.

When n > 3 , however, then the recursive use of formula (4.2) can generate
an infinite number of different vertices of simplices in bounded regions of M.n.
For example, let n = 3, let the initial simplex be a regular tetrahedron, and
let two of its vertices have the components v^ = (0,0,0) and v2 = (1, 0,0). We
consider the replacement of vm by vm recursively in the case when Vi and
v2 remain as vertices of every simplex that occurs. We know that all these
simplices are regular tetrahedra and that any two consecutive ones have
a common face. Therefore each replacement is equivalent to rotating the
current simplex about the x-axis through an angle 9 that satisfies cos 0 = 1/3
and —TT/2 < 9 < w/2. We let every 9 be positive. Hence all the simplices
are different if and only if the ratio k9/(2ir) is not an integer for every
positive integer k. This happens because such values of k are excluded by
the conditions cos# = 1/3 and cos(k9) = 1. Indeed, if cos(k9) is expressed
as a polynomial of degree k in cos#, then the coefficient of (cos9)k is 2k~l,
which is not divisible by three, and all the coefficients are integers. Therefore
cos# = 1/3 cannot be an exact solution of cos(k9) = 1, which completes
the analysis of the example. I do not know the answer to the question
whether, for n > 3, the simplex method under consideration always includes a
shrink in exact arithmetic, provided that the objective function has bounded
level sets and suitable smoothness properties. On the other hand, a shrink
is guaranteed in practice, because the number of different values of F(x),
i G K n , in computer arithmetic is finite.

Another simplex algorithm is proposed by Dennis and Torczon (1991). It
has the property that, due to a grid argument of the kind given already,
shrinks occur for any number of variables, provided that level sets of the
objective function are bounded. Each iteration of this algorithm begins as
before with a simplex whose vertices are Vi, i = 1,2, . . . , n + l, and with
the function values F(vi), i = 1,2,..., ra + 1 . Then the basic version of an
iteration finds an integer £ in [l , n+ l] such that F(vj) is the least of these

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 301

function values. Now the simplex that has the vertices

^ = 2 ^ - ^ , z = l , 2 , . . . , n+ l , (4.6)

is congruent to the current one, and a switch to this simplex is likely to
reduce the least function value at a vertex, because, for each i, the inequality
FivS) < F(UJ) is satisfied, and Vf is the mid-point of the line segment from
^ to V}. Therefore the algorithm calculates the objective function at the n
vertices of the new simplex that are different from v_^ = v^. It is possible,
however, that the new function values fail to achieve the strict reduction

min{F(ui):i = l , 2 , . . . , n + l } < F (^) . (4.7)

When this unsuccessful case occurs, then, as before, either the procedure
is terminated because the current simplex is sufficiently small, or there is a
shrink that overwrites v^ by \{v_i+V4) for i = 1, 2 , . . . , n+1 . Alternatively,
when condition (4.7) holds, then the basic iteration includes a test for doub-
ling the size of the simplex by choosing the vertices t)j = 2 ili—V£, i = 1, 2 , . . . ,
n + 1, so the n function values Ffy), i / f , are calculated too. Then the
inequality

minjFfe) : i = l, 2, . . . , n+ l} < min{F(uJ : i = l, 2, . . . , n+ l} (4.8)

is tried. If the conditions (4.7) and (4.8) are both satisfied, the points t)j,
i = 1,2,..., n +1, become the vertices of the simplex of the next iteration,
but, in the remaining case when inequalities (4.7) and (4.8) hold and fail,
respectively, the vertices of the new simplex are vt, i — 1,2,... ,n+l. The
fact that each iteration requires 2n evaluations of the objective function may
be an advantage in practice, because the algorithm is designed to be suitable
for parallel machines.

When analysing the convergence of this method, there is no loss of gener-
ality in selecting every vertex of the initial simplex from Z™. Hence, if a^ and
Tfc are the number of times that the size of the simplex is shrunk or doubled,
respectively, during the first k iterations, and if /j,k is the greatest of the dif-
ferences (Tj—Tj, j = 0,1,..., k—1, where cro = TQ = 0, then, at the beginning of
the fcth iteration, every component of every vertex of the current simplex is
an integer multiple of 2"^k. Thus, under the usual assumption that the set
{x : F(x) < FQ} is bounded, a finite upper bound on the increasing sequence
of integers {/Xfc : k = 1, 2,3,...} would provide a contradiction if the number
of iterations were infinite. Therefore a simplex that is small enough to give
termination occurs eventually. When this happens, the algorithm provides
the relations

a n d ?U = \(Mi+yi), i = 1,2,...,
(4.9)

302 M. J. D. POWELL

Further, the shape of the current simplex does not degenerate during the cal-
culation because the shapes of all the simplices are the same. Thus the condi-
tions (4.9) are analogous to expression (3.8). It follows that, if the objective
function is continuously differentiable, and if the property ||VF(v^)||2 < £
is required in exact arithmetic, where e is any prescribed positive number,
then it is suitable to let the final simplex be sufficiently small in the test for
termination.

The algorithm in the second paragraph of this section possesses a similar
property, except that, for ra>3, it is an assumption that enough shrinks are
made to achieve the termination condition for any choice of the final size
of the simplex. The following analysis gives an explanation of this property
in the case when every simplex is regular. Let termination occur because
F(v_m) > F(vm) holds, and because the lengths of the edges of the current
simplex are at most 6, which is a prescribed positive number. We may
assume that the inequalities (4.1) are satisfied, because, if the alternative
choice of m were made, then a switch to the usual choice would cause the
new v_m to be the vertex of the previous simplex that was replaced by vm,
so the condition F(vm) > F(vm) is retained. We let v* and g be the vectors
n~X Y17=i i^m^-i a n d V F ^) , respectively. Therefore, because the objective
function has a continuous gradient in a bounded level set, the formula

F{x) = F(iu) + {x-y*)\ + o(||x-nj2), (4.10)

is valid for all points x that are of interest. Hence, by letting x run through
the vertices of the current simplex that are different from vm and averaging,
we deduce the equation

ra+1

F{n{) + o{8). (4.11)

It follows from expression (4.1) that F(vm)—F(v_^) is at least o(6), so ex-
pression (4.10) implies (vm — vif)

Tg^>o(6). Similarly, F(vm) > F(vm) im-
plies (v_m — ll*)T9 > °(<5)- Therefore, by writing equation (4.2) in the form
vm — v^ — —{v_m — v*), we establish (vm — 2U)T9 = o(6). Furthermore, by
combining this result with conditions (4.1) and (4.10), we find the bounds

(vt-v*)\ = F (^) -F(r ; J + O(6) < F(vm) - F(v*) + o(S)

= (vm-v*)\ + o(6) = o(6), i = l , 2 , . . . , n + l . (4.12)

Let j be any integer in [l , n+ l] that is different from m, and let Vj be the
point where the straight line from Vj through v* leaves the current simplex.
Then llu- — u j k is of magnitude 6 and, because £• is in the convex hull

J J

of the vertices, it has the form Vj = Y17=i ̂ ^-i^ where the multipliers #j,

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 303

i = 1,2,..., n + 1 , are nonnegative and sum to one. Thus the bounds (4.12)
give the inequality

n+1

Further, because the directions Vj—2Z* and v- — v* are exactly opposite to
each other, expressions (4.12) and (4.13) imply the stronger condition (VJ —
v_*)Tg = o(6), which holds for every integer j in [l,n + l]. Therefore g
satisfies the equations

(Vi-vi)\ = o(6), i = 2 , 3 , . . . , n + l . (4.14)

Thus all of the ratios (u— Vi)Tg / WlLi— JZ1II2! i = 2, 3 , . . . , n+1, tend to zero if
the lengths of the edges of the simplices are shrunk to zero. It follows from
the uniform linear independence of the vectors v_i~U\i i = 2, 3 , . . . , n+1 , that
||g H2 tends to zero too. Hence, for any positive number e, the termination
condition implies ||<7 H2 <e in exact arithmetic, provided that 8 is sufficiently
small.

We consider also the algorithm of Nelder and Mead (1965), because it
has become the most popular simplex method in practice for unconstrained
optimization. The introduction to that paper states 'In the method to be
described the simplex adapts itself to the local landscape, elongating down
long inclined planes, changing direction on encountering a valley at an angle,
and contracting in the neighbourhood of a minimum'. These properties
are often, but not always, achieved in numerical experiments. An itera-
tion of the algorithm, with typical parameter values, has all the features
mentioned in the opening paragraph of this section, the other details be-
ing as follows. Let F{vj) and F(» A) be the least and second largest of
the numbers F(VJ), i = 1,2,... ,n + l. If the function value at the point
(4.2) satisfies the conditions F(vg) < F(vm) < F(v7yl), then vm is overwrit-
ten by vm and the next iteration is begun. Otherwise, if F(vm) < F(y_£)
occurs, then elongation is attempted by calculating F(vm), where vm is the
point v_m + \{jim — Hm.)- Further, v_m is replaced by v_m or v_m in the case
F(Um)<F(vm) or F (v m) > F (u m) , respectively, which provides the simplex
for the next iteration. In the remaining situation F(vm) > i ^ t ^ J , the in-
equality F(vm) <F(wm) is tested. If it holds or fails then vm is overwritten
by ^V.m + j%im or \vm + ̂ vm, respectively, and F(vm) is calculated at the
new point. Then vm replaces vm as before if and only if the new F(vm) is
strictly less than F(vm), the alternative being to shrink the simplex in the
way described already. The calculation may be terminated when the lengths
of the edges of the current simplex become less than a prescribed positive
number. Some of these details are taken from Wright (1996).

That paper includes an excellent discussion of the limitations, disadvant-
ages, successes and developments of the Nelder and Mead algorithm. The

304 M. J. D. POWELL

fact that literature searches show that it is the most used method for uncon-
strained optimization in practice is remarkable, because some severe cases
of failure have been found. One source of trouble is that a sequence of it-
erations can cause the volume of the current simplex to tend to zero, when
the length of the longest edge of the simplex is bounded below by a positive
constant. In particular, let n = 2, let the vertices of the current simplex
have the coordinates (a,0), (0, —1) and (0,1), where a is nonzero, and let
F be any smooth function with the following properties. The form of F on
the x-axis, namely F(x, 0), xGK, is strictly convex and is least at x = 0.
Further, the inequalities

F(0, -1) < F(0,0) and F(0,1) < F(0,0) (4.15)

are satisfied. Then formula (4.2) provides v_m = (—a, 0), which gives the
F{ilm) >F{llm) situation, so the components of v_m are altered to (—^a, 0)
or {\OL, 0). Now the choice between these alternatives by the algorithm,
the convexity condition and F(0,0) < F(a, 0) imply that the new value of
F(vm) is strictly less than F(vm). Thus the outcome of the iteration is the
replacement of a by —\a or \a. Such iterations can continue indefinitely,
and then the current simplex tends to have the vertices (0,0), (0, —1) and
(0,1). This result is particularly unfortunate, because the modulus of the
second component of the gradient V_F(x) can be large at all the vertices of
all the simplices that occur during the calculation.

The function F(x), x e R 2 , can be convex in the example, provided that
both of the conditions (4.15) hold as equations. Then the assumptions im-
ply that the least value of the objective function occurs at the origin, so the
performance of the algorithm is adequate. On the other hand, McKinnon
(1997) constructs a more interesting case with n = 2, where the objective
function is strictly convex and has continuous second derivatives, where the
gradient vector VF(0,0) is nonzero, where the number of iterations of the
Nelder and Mead (1965) algorithm is infinite, and where all the vertices of
the current simplex tend to the origin. Further, this unacceptable beha-
viour occurs without any shrinks, which is possible because the directions of
the edges of the current simplex tend to be orthogonal to VF(0,0). These
examples are disturbing, and they provide some very strong reasons for ques-
tioning the current use of simplex methods for unconstrained optimization
calculations.

5. Conjugate direction methods

As mentioned already, conjugate direction methods apply line searches, and
they are designed to be efficient for unconstrained minimization when F(x),
x G Rn, is a strictly convex quadratic function. Further, it is hoped that some
of the efficiency of the quadratic case will be inherited when the objective

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 305

function is general. We assume the quadratic form

F(x) = F0 + xTg0 + \ xTAx, x_eRn, (5.1)

when denning conjugate directions, where A is a constant positive definite
symmetric matrix. Specifically, the nonzero vectors d{ € Rn and dj € R™ are
conjugate if and only if they satisfy the equation

dfAdj = 0. (5.2)

The most useful consequence of conjugacy is that, if F is the quadratic
function (5.1), if the fcth iteration of an algorithm is making a line search
from xk along the direction dk, and if d is any direction conjugate to dk, then
the scalar product dTV_F(xk-\-adk) is independent of the step-length a G l of
the line search, which can be verified easily. In particular, if dTV_F(xk) = 0
holds, then it follows from formula (2.1) that dTV_F(xk+1) = 0 is achieved
too. Moreover, an exact line search along dk provides dkV_F{x_k+l) = 0.
Thus, if each iteration makes an exact line search, and if each search direc-
tion is conjugate to all the previous search directions, then x_k+1 enjoys the
property

j = 0, j = l,2,...,k, (5.3)

for every positive integer k. Further, if VF(xfc+1) is nonzero, then the
possible choice dk+1 = — A~1V.F(xje+i) shows that there exists a dk+1 that
is conjugate to dj, j = 1,2,.. . , k. On the other hand, it follows from the
positive definiteness of A that directions that are conjugate to each other
are linearly independent. Therefore VF(x f c + 1)=0 occurs in equation (5.3)
if k attains the value n, and then xfc+1 is the optimal vector of variables.

The remarks made so far are well known, and they are the basis of some
very successful algorithms for unconstrained optimization when the gradient
VF(x), x G R", can be calculated. We are assuming, however, that no
derivatives are available. Therefore we turn our attention to the construction
of search directions from function values in ways that provide some useful
conjugacy properties if F happens to be quadratic.

The following technique is highly useful. If F is a strictly convex quadratic
function, and if xp and x^ are different points of Rn that satisfy d V_F(x_p) =
0 and dTV_F(gCq) = 0, for some nonzero vector d, then the choice d^ — x^—x^p
provides a search direction that is conjugate to d. It is true because equation
(5.1) implies the identity

dTV_F%)-dTV_F{xp) = dT{Ax^)-dT{Axp+gJ = d_TA{x^p), (5.4)

and it allows sequences of mutually conjugate directions to be formed. In-
deed, let the directions d^\ j = 1,2, ...,£, be mutually conjugate, where £
is an integer from [l,n —1], and suppose that we require a direction dSi+l'
that is conjugate to d ̂ \ j = 1,2,. . . , L Then we pick integers p and q that

306 M. J. D. POWELL

satisfy p > £ + 1 and q > p + £ + l, and we let the sequence of points xk,
k = 1,2,3,. . . , be generated by an algorithm that makes exact line searches
on every iteration. Further, we include the search directions

dp_e_1+j = d , _ / _ i + i = d (i) , j = l,2,...,£. (5.5)

Then, corresponding to equation (5.3), the line searches and conjugacy
provide the identities

^ i p = 0 and d^_e_1+j^F(xq) = Q, j = l,2,...,£, (5.6)

in the quadratic case. Therefore the remark at the beginning of this para-
graph is applicable if d is any of the vectors d^\ j — 1,2, ...,£. It follows
that the direction d^+l> = xq—xp satisfies all the required conjugacy condi-
tions, provided that x_g is different from x_ A generalization of this method
helps to achieve x^^Xp. It is that the step from xp to xp+1 can be arbitrary,
because q>p+£+l implies that dp is not included in expression (5.5).

This construction allows the least value of a strictly convex quadratic
function to be calculated using ^n(n + l) line searches and n — 1 displace-
ments, as suggested by Smith (1962). A version of his method lets s^\
j — 1,2,... , n, be any linearly independent vectors in M.n, and it forms a
sequence of mutually conjugate directions d^\ j = 1, 2 , . . . , n, such that, for
each integer £ in [l,n], the direction d^ is in the linear space spanned by
$ \ j = 1, 2 , . . . , £. Therefore d}1' = s^ and £=1 are set initially, and x± is
any given point in Rn. Then x2 is calculated by an exact line search from
x_i along the direction d}1'. These starting conditions are a special case of
the fact that, when <P\ j = 1, 2 , . . . , £, are known for any £ in [1, n], then a
point xp is available that satisfies the first part of expression (5.6) for the
search directions dp_e_1+j, j = 1, 2, ...,£, the value of p being ^£(£+3), which
includes p = 2 when £ = 1. For each £ < n, the method generates a point
Xq, different from xp, that achieves the second part of expression (5.6), in

order that the choice Se+1^ =xq—xp has the required conjugacy properties.
Specifically, xp+l is any point of the form xp+aps^e+1\ where ap is nonzero,
and then, for k = p+l,p+2,... ,p+£, the new vector of variables xk+l is
obtained by an exact line search from xk in the direction dk = (fk~p\ which
provides q = p + £+l. There is also an exact line search from x^ in the

direction dSi+l^> =xq — xp, giving the point x ^ = xp+e+2- The conjugacy
conditions allow this point to be the new xp when £ is increased by one, and
the identity

± (5.7)

shows that p=^£(£+3) is preserved. The method is applied recursively until
£ = n is attained. Indeed, xp is optimal when £ = n, because it is the result
of n consecutive line searches along mutually conjugate directions.

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 307

This method can be applied when F is a general function, using a practical
line search method that would be exact if F were quadratic. Then we call the
technique of the last paragraph a 'cycle', because it is usual to employ several
cycles, where the final point x of each cycle becomes the starting point xY

of the next cycle. An unsatisfactory feature of this algorithm, however, is
that, for each integer I in [l,n], a cycle makes just n + 1 — £ line searches
along S-l>, so the search direction d}n' occurs only once in the ^n(n+l) line
searches. Therefore Powell (1964) suggests the following procedure, where
each cycle includes only n or n + 1 line searches, using directions that span
the full space of the variables.

A cycle requires a starting point x_± and n linearly independent directions
dj, j = 1, 2 , . . . , n, say, that are not expected to have any conjugacy prop-
erties initially in the quadratic case. For k = 1,2, . . . , n , the point xk+1

is generated by a line search from xk along dk. Then the function value
F(xn+1+dn+1), where dn+l = xn+1 — x_x, is calculated for a test that is spe-
cified in the next paragraph. If the test fails, the next cycle is given the
current search directions, and its starting point is the current xn+1. Oth-
erwise, if the test succeeds, then xn+2 is generated by a line search from
xn+1 along dn+1, and xn+2 becomes the starting point of the next cycle.
Further, the search directions of the next cycle are obtained by deleting one
of the first n vectors from the sequence dx,d2,... ,dn+1, without changing
the order of the sequence. A reasonable way of picking the vector that is
deleted is also given in the next paragraph. For the moment, however, we
make the ideal assumptions that F is a strictly convex quadratic function,
that all the line searches are exact, that the test that has been mentioned
never fails, that the deleted vector is always dj, that the search directions
dj, j = 2, 3 , . . . , n + 1, of every cycle are linearly independent, and that the

number of cycles is n. Then, by considering the construction of d}e+1> in
the paragraph that includes expressions (5.4)-(5.6), we deduce that, at the
end of the jth cycle, the last j of the directions d1:d2,..., dn+1 are mutually
conjugate, where j is any integer in [l,n]. This statement is trivial for j — 1
and, using induction, we suppose that it is true for j £ [1, n—1]. In this case,
corresponding to equation (5.6), the points x_x and xn+1 of the (j+l)th cycle
have the properties

) = 0 and d f VF(x n + 1) = 0, k = n,n-l,... ,n-j+l, (5.8)

where dk is now the A:th search direction of the (j+l)th cycle. Thus the vector
dn+i =2Zn+i~^i> wriich does not vanish because of the linear independence
assumption, is conjugate to dk, k = n,n—\,... ,n—j+l, which establishes the
inductive hypothesis. It follows that the last n search directions of the nth
cycle are mutually conjugate. Therefore the optimal vector of variables is
calculated, the total number of line searches of all the cycles being n (n+ l) .

308 M. J. D. POWELL

Let m be the integer in [l ,n + l] such that the cycle of the previous
paragraph removes dm from the sequence dx, d2 > • • •»dn+i , m order to provide
the search directions for the next cycle. Therefore m — n-\-l occurs if and
only if the test to be described fails. The purpose of the test is to make the
new directions as linearly independent as possible in the quadratic case. We
define the 'Euclidean measure' of linear independence of the vectors Sj GR",
j = 1, 2 , . . . , n , to be the modulus of the determinant of the matrix with
the columns Sj/ll^j II2, j' = 1 ,2 , . . . ,n . Moreover, when F is the quadratic
function (5.1) and when its second derivative matrix A is positive definite,
we define the 'natural measure' to be the modulus of the determinant of
the matrix with the columns Sj/(sjAs,)1//2, j = l,2,...,n. The method of
Powell (1964) chooses m in a way that maximizes the 'natural measure' of
the directions that are retained. In order to specify this choice, we deduce
from the identity n

fc=i

that, if m < n occurs in the quadratic case, then the natural measure of the
retained directions is the natural measure of dj, j = 1, 2 , . . . , n, multiplied
by the number „ , ,„ _ , .„

Pm = am{dlAdmY>2/{<£+lAdn+l)
l'\ (5.10)

but we require an expression for this quantity in terms of the available
function values. Now, for each integer k in [1, n], the point x_k+l is calculated
by an exact line search along dk, which provides the formula

F(xk) - F(xk+l) = \ (xk-xk+1)
TA(xk~xk+l) = \<x\dlAdk (5.11)

in the quadratic case. We also make use of the fact that the function (5.1)
has the property

F(xn+1-dn+1) -2F(xn+1) + F(xn+1+dn+1) = dZ+1Adn+1. (5.12)

Therefore m is picked by the following procedure for all functions F(x),
x G Rn. We let m be a value of k in [l,n] that maximizes the difference
F(xk) — F(xk+1), k = l,2,... ,n. The choice m = m is made if the test

F(xA) - F{x^+l) > \ F{xx) - F(xn+1) + I F(xn+1+dn+1) (5.13)

is satisfied, which provides /3m > 1 in the quadratic case, but m = n + 1 is
selected otherwise. It can be deduced from the condition ^(x^)—F(x^+ 1) <
F(z.i) — F(xn+i) that the test (5.13) is equivalent to the one that is used in
Powell (1964).

A property of the 'natural measure' makes it appropriate for the present
application. The property is that, if F is the strictly convex quadratic
function (5.1), then the natural measure of the directions dk G lRn, k =
1,2,... ,n, is greatest if and only if the directions are mutually conjugate.
In order to prove this assertion, we assume without loss of generality that

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 309

the lengths of the directions satisfy dkA dk = l, k = 1, 2 , . . . , n. Therefore the
natural measure is | det D |, where D is the nxn matrix with the columns
dk, k = l,2,...,n. Further, if the directions are mutually conjugate, then D
satisfies DTAD = I, which implies | det D | = (det A)~1/2. Thus the natural
measure is the same for all sets of mutually conjugate directions. It follows
that the assertion is true, provided that lack of conjugacy allows the natural
measure to be increased. Therefore we assume djAd_2^Q. If dx and d2 are
overwritten by sx = cosddl— smdd2 and s2 = sin#d1+cos#d2, respectively,
for any real 9, then det D does not change, but the natural measure of the
directions is multiplied by {(s^As^) (s^AS2)}~1'2• This factor is greater
than one when $ = TT/4, say, due to the elementary relation

= (1 - djAd2) {\ + d[Ad2) = 1 - (d?Ad2)
2 < 1, (5.14)

which completes the proof.
On the other hand, the 'Euclidean measure' of linear independence of the

directions dk, k = 1,2,..., n, is greatest if and only if the directions are mutu-
ally orthogonal. It has the advantage over the 'natural measure' that it can-
not become misleading in general calculations due to pathological features
of the objective function, but it is less suitable as an aid for achieving con-
jugacy. It is possible, however, to maximize both measures simultaneously
when F is the function (5.1), by letting the search directions be mutually
orthogonal eigenvectors of the symmetric matrix A. The 'Praxis' algorithm
of Brent (1973) takes advantage of this remark in the following way. The
natural measure of linear independence is employed throughout, and also,
after about every n2 line searches, the matrix A is defined by the equation
DTA D = I, where the columns of D are still the vectors dk, k = 1, 2 , . . . , n.
Further, these vectors are normalized so that the second derivative of the
line search function F(xk + adk), a G R, is approximately one at a = ak

for each k. Then the current search directions are replaced by mutually
orthogonal eigenvectors of A. Another interesting use of eigenvectors occurs
in the algorithm of Brodlie (1975). Here the technique for achieving the
conjugacy condition dpAd^ — O, where p and q are any integers that satisfy
1 <p < q < n, is analogous to the annihilation of the (p, q) off-diagonal matrix
element in Jacobi's method for calculating the eigenvalues of an n x n sym-
metric matrix. Thus the search directions can remain mutually orthogonal,
but, when F is quadratic and n > 3, it is usually not possible to calculate
the least value of F in a finite number of iterations.

There is some convergence theory for the algorithms of this section when
F{x), xeRn, is a convex function that need not be quadratic. In particular,
the analysis of Toint and Callier (1977) allows some freedom in the step-
lengths of the line searches.

310 M. J. D. POWELL

6. Linear approximation methods

The changes to the variables in the simplex methods of Section 4 depend
on the positions vif i = l,2,...,n+l, of the vertices of the current simplex,
and on an integer m in [l ,n + l] that is usually defined by the conditions
F(vm) >F(v i) , « = 1, 2 , . . . , n+\. These methods make no other use of F(VJ),

i = 1, 2 , . . . , n +1, however, when choosing the next vector of variables for
the calculation of the objective function, although the function values at
the vertices can provide highly useful information when F is smooth. In
particular, there is a unique linear polynomial from W1 to R, <£ say, that
satisfies the interpolation conditions

Hvi) = F(vi), 2 = 1 , 2 , . . . , n + 1 , (6.1)

and often V $ is very helpful for reducing the least calculated value of F.
Therefore we will consider changes to the variables that are derived from $.
The given procedures also allow constraints on the variables of the form

cP(x)>0, p = l , 2 , . . . , m , (6.2)

where m denotes the number of constraints from now until the end of the
section. The constraint functions have to be specified by a subroutine that
calculates cp(x), p = 1, 2 , . . . , m, at points x e Rn that are generated auto-
matically. These points include the vertices of the current simplex, in order
that, for each p, we can let 7P be the linear polynomial from Rn to R whose
coefficients are denned by the equations 7P(UJ) = Cp(v_i), i = 1,2,... , n + 1.
Then the inequalities (6.2) are approximated by the linear conditions

7 P f e) > 0 , p = l , 2 , . . . , m . (6.3)

Most of the techniques of this section are taken from Powell (1994).
We restrict attention to iterative algorithms, where, for k = 1,2,3,..., the

A;th iteration employs the current simplex and the linear approximations of
the previous paragraph. The initial simplex is constructed from data that
include a recommended distance between vertices, namely Ai >0. For each
k, we let xk be the best of the vertices u,, i = l , 2 , . . . , n + l , which implies
the conditions

xke{vi:i = l,2,...,n+l} and F(z f c)<F(vJ , i = l , 2 , . . . , n + l , (6.4)

in the unconstrained case. A suitable extension of the last inequality for
m > 1 is given in the final paragraph of this section. Each iteration until ter-
mination generates a new vector of variables, vn+2 say, where the difference
v_n+2—x_k is either a 'minimization step' or a 'simplex step'. The values of F
and any constraint functions are calculated at v_n+2- Then the n+1 vertices
of the simplex of the next iteration are chosen by deleting one point from
the set {WJ : i = 1, 2 , . . . , n + 2}. Further, xk+1 is denned in the way men-
tioned earlier, any ties being broken by retaining xk+l =xk, unless a change

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 311

provides a strict improvement according to the criterion for the best vertex.
An iteration also sets the parameters A.k+i and pk+\ before increasing k,
where pi = Ai. All of these operations receive further consideration below.

The minimization of $(x), i £ l n , subject to the constraints (6.3), is a
linear programming problem that usually fails to have a finite solution in
the case m<n. Further, it is likely that the linear approximations are too
inaccurate to be useful when x is far from the current simplex. Therefore
we consider algorithms that employ trust region bounds. Specifically, the
vector vn+2 of the kth iteration has to satisfy the inequality

\\vn+2-xk\\ < Pk, (6.5)

where pk is a positive number that is available at the beginning of the it-
eration, but it may be reduced occasionally. On most iterations, vn+2 *s

the vector x that minimizes $(x) subject to \\x_ — xk\\ < pk and the condi-
tions (6.3), and then vn+2 — xk is the 'minimization step' of the previous
paragraph, provided that ||un+2—xfc|| is as small as possible if the solu-
tion to this subproblem is not unique. It can happen, however, that the
constraints of the subproblem are inconsistent, and then the 'minimization
step' is defined by minimizing the greatest violation of a linear constraint,
namely max{—7P(vn+2) : p = 1, 2 , . . . , m}, subject to inequality (6.5), where
again any nonuniqueness is taken up by reducing ||vn+2~^/bll- Powell (1994)
addresses these calculations when the vector norm is Euclidean, and recom-
mends a procedure that generates the path vn+2(a)^ 0 < a <pk, in E", where
vn+2(a) is the vn+2 that would be required if pk were equal to a. This path
begins at the point vn+2(0) = x_k, and is continuous and piecewise linear.
Further, the different pieces of the path correspond to different indices of
critical constraints, the qth constraint being critical if and only if the con-
ditions Jq(x) < 0 and jq(x) < ~fp(x), p = 1, 2 , . . . , m, hold. Sometimes the
length ||vn+2~^fell °f the 'minimization step' is 'too small', and then it is
usual to replace vn+2—xfc

 DY a 'simplex step'. There are also iterations that
calculate only a 'simplex step'. The reasons for these alternatives are as
follows.

We consider the case when there are no given constraints on the variables,
when vn+2~xk is a 'minimization step', when ||vn+2~^fcll is large enough for
F(vn+2) to be calculated, and when the new function value has the property

(6.6)

Then, because the definition of the minimization step implies $
-̂ (zifc)) the approximation $(vn+2) ~-^fen+2) is inadequate. There are two
main causes of the inadequacy, and it is important to distinguish between
them. Firstly, vn+2 may be so far from xk that very good linear approx-
imations to F in a neighbourhood of xk may be unsuitable at vn+2-> °^ue to
second and higher order terms or lack of smoothness of the objective func-

312 M. J. D. POWELL

tion. Secondly, although the bound (6.5) may ensure that any one of these
very good approximations provides a minimization step that is successful at
reducing the least calculated value of F, the interpolation conditions (6.1)
may define a linear polynomial $ that is unhelpful. This can happen if one
or more of the distances ||«j—xk\\, i = 1, 2 , . . . , n + 1 , is much greater than pk

or if the current simplex is nearly degenerate. The appropriate remedy in
the first case is to shorten the length of the minimization step on the next
iteration by choosing pk+\ <Pfc, which is a standard technique in trust region
algorithms. In the second case, however, the remedy is to choose a better
simplex. When v_n+2 ls calculated for the latter purpose, we call vn+2—xk

 a

'simplex step', the actual choice of vn+2 being the subject of the following
paragraph. The choice is independent of $, except for a plus or minus sign,
and vn+2 becomes one of the vertices of the simplex of the next iteration.
The need for such steps is clear if a given constraint on the variables is lin-
ear, and if vn+2 satisfies the constraint as an equation for all minimization
steps. Indeed, if there were no simplex steps in this case, and if all of the
vertices of the initial simplex have been removed from the current simplex
by earlier iterations, then all of the current vertices v_i, i = 1,2,..., n+1 , are
on the boundary of the linear constraint. Thus the equations (6.1) fail to
define the coefficients of <£, because the matrix of the equations is singular.
Therefore a reason for the 'simplex steps' is to oppose any tendencies for
the current simplex to become degenerate.

It has been mentioned that Ai > 0 is a prescribed parameter that controls
the size of the initial simplex. Most of the later iterations employ Ak = Ak-\,
and each A^ is an acceptable length for the edges of the current simplex, the
length being relevant to the suitability of the linear polynomial $ defined by
the equations (6.1). Specifically, it is assumed that the nonlinearities of the
objective function may damage the usefulness of the approximation QzsF, if
any of the distances ||VJ—xk ||, i = 1, 2 , . . . , n+1, is much greater than Ak. On
the other hand, when 'minimization steps' are successful at improving the
best vector of variables so far, then there is no need for any 'simplex steps'.
Thus 20 consecutive iterations, say, may make changes to the variables that
are minimization steps, and all of the changes may be in roughly the same
direction in Mn, which causes max-fH^ — xfc|| : i = 1, 2 , . . . , n+1} to become
large. Eventually, however, we expect the sequence of successful iterations
to be interrupted by a minimization step that makes vn+2 no better than xk,
which means that inequality (6.6) occurs in the unconstrained case. Then
the next iteration employs a 'simplex step'. When the fcth iteration tries to
take a simplex step, an integer £ in [1, n] is calculated that has the property

Ill^-^fcll =max{\\Vi-xk\\ : i = l,2, . . . , n + l } . (6.7)

Further, the condition ||l^—xk\\ <(3Ak is tested, where j3> 1 is a prescribed
constant that has the value /3 = 2.1 in the work of Powell (1994). If the test

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 313

fails, then vn+2 is chosen in a way that makes it suitable to delete v_i from
the set {VJ : i = l , 2 , . . . , n + 2 } , when generating the vertices of the simplex
of the next iteration. Specifically, letting u^ € Mn be a vector of unit length
that is orthogonal to the face of the current simplex that is without v^, we
let vn+2 be the point

(6.8)

where the ± sign is negative if and only if xk—AfcO^ is better than
according to a criterion in the last paragraph of this section. Otherwise, if
11^ — xk\\ < (3Ak is achieved, the algorithm seeks a different integer £ in
[l ,n+ l j . Indeed, letting CTJ be the distance from Uj to the plane in W1 that
contains the vertices of the current simplex that are different from v,i, the
new I minimizes ag subject to 2U^x_k. Therefore a very small value of cri
indicates that the simplex is nearly degenerate. The inequality ae > a Ak is
tried, where a < 1 is another positive constant, for instance a = 1/4. If the
inequality fails, then vn+2 is denned by formula (6.8) for the new £, where
the ± sign and u^ are as before. Further, the new simplex is generated
by replacing ve by vn+2 in the list of vertices, which increases the volume
of the current simplex by the factor Ak/a^. If ap > a Ak holds, however,
then the positions of the vertices vi: z = l , 2 , . . . , n + l, are assumed to be
adequate for the equations (6.1) that define $, and we say that the simplex
is 'acceptable'. Then the iteration tries to generate v n + 2 by a 'minimization
step' instead of by a 'simplex step'.

We are now ready to consider the choices between the minimization and
simplex step alternatives, the values of Afc and pk, k = 1,2,3,. . . , and a
condition for terminating the calculation. Simple rules are recommended
for adjusting Afc and for termination. Specifically, Ai is given, and, until
termination, the kth iteration sets A^+i = Afc, where k is still the iteration
number. The value of Afc at the start of the kth. iteration is provisional,
however, in order that a few iterations can reduce Afc, although no increases
are allowed. A positive parameter, A* say, has to be prescribed that sat-
isfies A* < Ai, because it is a lower bound on every Afc. The changes in
Afc have to be such that Afc = A* occurs after a finite number of reduc-
tions. The situation that causes a reduction is described in the paragraph
after next. The calculation terminates when this situation occurs and Afc
has already reached the value A*. These rules afford the following useful
properties. Every iteration until termination picks a vector of variables vn+2
that satisfies the inequality

\\vn+2-xk\\>Ak, (6.9)

and Afc is not reduced until this condition seems to prevent further im-
provements to the variables. The user can pick a value of Ai that causes
substantial adjustments to the variables to be tried at the beginning of the

314 M. J. D. POWELL

calculation, which can alleviate the damage from any random noise in the
function values. Then the bound (6.9) can be refined gradually by the de-
creases in Afc. Further, when the given functions are smooth, good accuracy
can usually be achieved at termination by letting A* be sufficiently small.

Powell (1994) sets pk = Afc throughout the calculation, but changes to
the variables that are much greater than Afc are sometimes necessary for
efficiency. Indeed, there are unconstrained calculations with quadratic ob-
jective functions such that, when Afc is reduced, the distance from xk to the
optimal vector of variables is of magnitude MA^, where M is the condition
number of the second derivative matrix V2F. Therefore it may be helpful
to allow pk to be much larger than Afc. Moreover, the initial choice p\ = A\
has been mentioned already, and it is reasonable to set pk to the new value
of Afc when Afc is decreased, because pk should become less than the old
value of Afc for the moment, but condition (6.9) excludes pk < Afc. These
remarks suggest the following guidelines for the choice of pk, k = 1,2, 3 ,
We pick pfc = Afc for each new Afc, which causes pk to be less than its value
at the beginning of any iteration that decreases Afc, but there are no other
changes to pk during an iteration. The value Pk+i =Pk is often set at the end
of the kth iteration, and it always occurs when un+2—xfc is a 'simplex step'.
On the other hand, pk+i > pk is allowed when wn+2 — xk is a 'minimization
step' that provides Xfc+1 ^-Hk- ^ a minimization step fails to improve the
best vector of variables so far, however, then the next minimization step is
required to be substantially shorter than the present one, except that the
bound (6.9) is preserved. Therefore the value

=max[Af c , \ \\v_n+2-xk\\], (6.10)

for example, may be suitable. Some choices of pk after successful minimiz-
ation steps can be found in Chapter 5 of Fletcher (1987), for instance, and
in other published descriptions of trust region methods.

Each iteration until termination has to choose a 'minimization step' or a
'simplex step'. The method that fixes the choice is specified below, using
the nomenclature that a minimization step is 'long enough' if it satisfies
inequality (6.9), and is 'questionable' unless its length is exactly Afc and
the current simplex is 'acceptable'. When the iteration does not reduce Afc,
then the choice between the alternatives is determined by the following four
rules, which are given in order of priority.

(1) A minimization step is preferred if it is long enough and if either k = 1
or the previous iteration improved the best vector of variables so far.

(2) A minimization step is preferred if it is long enough and if the previous
iteration applied a simplex step.

(3) A simplex step is preferred if neither (1) nor (2) apply and if the current
simplex is not acceptable.

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 315

(4) A minimization step is preferred if it is long enough, if the current sim-
plex is acceptable and if the previous iteration employed a minimization
step that is questionable.

Thus the remaining possibilities are the following two situations.

(5) The current simplex is acceptable and the minimization step is not long
enough.

(6) The current simplex is acceptable, the minimization step is long enough,
the previous iteration applied a minimization step that is not question-
able, but that iteration did not improve the best vector of variables.

In these cases the time has come to reduce Afc and pk. Therefore termination
occurs if Afc has attained the value A*. Otherwise, after reducing Afc and
Pk, the required choice is determined by three more rules.

(7) The minimization step is preferred if it is long enough for the new Afc.
(8) The simplex step is chosen if (7) fails and if the current simplex is not

acceptable for the new Afc.
(9) In all other cases, Afc is still too large, so we introduce a recursion by

branching back to the part of the algorithm that either causes termin-
ation or reduces Afc.

Thus each iteration before termination picks just one vector v_n+2 a^ which
the values of the given functions from M.n to R are calculated.

Another question that requires an answer is the choice of the n+1 vertices
of the simplex for the next iteration from {VJ : i — l , 2 , . . . , n + 2}. We
let v^ be the point that is not retained, which agrees with equation (6.8)
when v_n+2 — x.k IS a 'simplex step'. We propose a new choice of £ when
v.n+2~%k is a 'minimization step', however, because the technique in Powell
(1994) assumes p^ = Afc for every k. Let xk+1 e {VJ : i — 1, 2 , . . . , n + 2} be
determined before £ is selected, which is possible because we require the best
vector of variables so far. Further, let the real multipliers 6{,i = l,2,... , n+2,
satisfy the equation

n+2
J>te-3Zfc+i) = O, (6.11)
1=1

where #j, is zero for the integer z* that is defined by xk+1 =vim, but some of
the other multipliers are nonzero. It follows from the nondegeneracy of the
current simplex that the values of the multipliers are determined uniquely
except for a scaling factor. Now, if i and j are different integers in [1, n+2]
such that Oi and 9j are nonzero, and if <Sj and Sj are the new simplices for
£ = i and £=j, respectively, then equation (6.11) implies the property

| Vol Si I Vol Sj\ = \9i/ Oj | . (6.12)

316 M. J. D. POWELL

Therefore it may be suitable to pick £ by satisfying the condition \6e =
max{|#j| : i = 1,2,... ,n + 2}. This method, however, would favour the
retention of any points v_i that are far from xk+1, and we do not want the
new simplex to have a large volume because the lengths of some of its sides
are much greater than Ak. Instead we take the view for the moment that,
for every i in [l,ra + 2] such that ||VJ — ^jt+ill exceeds Ak, the point V{ is
replaced by the point on the line segment from xk+1 to vt that is distance
Ak from x_k+1, but v_i is unchanged for the other values of i. Then we choose
£ by applying the procedure just described to these new points. Specifically,
for each integer i in [l,n + 2], we find that Q\ in equation (6.11) has to be
scaled by max[l, ||u$ — xfc+1||/Afc], because of the temporary change to v_i-
Therefore we let £ be an integer in [l,n+2] that has the property

> \di\ max [Ak, | |Vj-xfc+1| |], i = l, 2 , . . . , n+2 .
(6.13)

Thus, if the current simplex has a vertex that is far from the best vector
of variables, there is a tendency to exclude it from the simplex of the next
iteration.

The merit function, ^ say, of the calculation provides a balance between
the value of the objective function and any constraint violations, in order
to determine the best vertex of the current simplex. Specifically, 'f is the
same as F when there are no constraints, and, for m> 1, the form

y(x) = F(x)+n[max{-Cp(x):p=l,2,...,m}]+, xeRn, (6.14)

is taken from Powell (1994). Here /J, is a parameter that is zero initially
and that may be increased automatically as described below. Further, the
subscript '+ ' indicates that the expression in square brackets is replaced by
zero if and only if its value is negative. Thus ^(x) — F(x) occurs whenever
x is feasible, and it is helpful to scale the constraint functions so that the
values cp(x), p = 1, 2 , . . . , m, have similar magnitudes for typical vectors x.
Expression (6.4) is extended to m > 0 by requiring the best vertex xk to
satisfy the conditions

and * (x f c) < * (^) , i = l ,2, . . . , n + l . (6.15)

After choosing xk, both the minimization and the simplex steps are inde-
pendent of ty and /x, but \& is usually important to what happens next.
Indeed, if the new vector of variables of the kth iteration, namely vn+2,
is generated by a minimization step, then usually another minimization
step is chosen by the (A;+l)th iteration if and only if the strict inequal-
ity ty(vn+2) < ^{x.k) holds. Further, this inequality should be achieved if all
the linear approximations of the first paragraph of this section are exact.
Therefore we require the value of // to provide the property

< Y(•£*:)> if U.n+2~^-k is a minimization step, (6.16)

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 317

where T is the piecewise linear approximation

T(x) = $(x) +/z [max {-7p(x) :p = 1,2,..., m}]+, xGR", (6.17)

to the merit function (6.14). Now a minimization step either reduces the
contribution from the constraints to expression (6.17), or the contribution is
zero and $(vn+2) < ̂ G f̂c) occurs, where we are excluding steps that are zero,
because they are abandoned automatically, due to the failure of inequality
(6.9). It follows that condition (6.16) can be achieved whenever it is required
by choosing a sufficiently large value of fi. Therefore Powell (1994) proposes
the following technique for increasing /J,. Whenever a minimization step is
calculated that has the property (6.9), we let // be the least nonnegative
value of /x that provides T(t>n+2) < T(x.k)- Further, [i is unchanged in the
case n > |/2, but otherwise it is increased to 2/z. A possible consequence of
an increase in n is that xk is no longer the optimal vertex, and then the
calculated minimization step would be incorrect. Therefore xk is changed
if necessary to another vertex that satisfies the conditions (6.15). Then
the minimization step is recalculated, so /i may have to be increased again,
which may cause a further change to the optimal vertex. Fortunately, this
procedure does not cycle, because each change to x_k causes a strict reduction
in max{—7p(xfc) : p = 1, 2 , . . . , m}. Another use of T is that the ± sign of
expression (6.8) is negative if and only if T(xk — AfcU)̂ is less than T(xk +
AfcO)̂. Some remarks on the convergence properties of the algorithm of this
section are made in Section 9.

7. Quadratic approximation methods

Many of the techniques of this section are similar to those of Section 6, but
now we let the approximation $(x), i G l " , to the objective function F(x),
xGl" , be a quadratic polynomial instead of a linear polynomial. Therefore
$ has ^(n+1) (n+2) = n, say, independent coefficients, that may be defined
by the interpolation conditions

Hvi) = F(vi), i = l,2,...,h, (7.1)

where the vectors Vi, i = 1,2,..., n, are points in Rn. These points should
have the property that, if expression (7.1) is written as a system of linear
equations, the unknowns being the coefficients, then the matrix of the system
is nonsingular. The Lagrange functions of the interpolation problem will be
useful later. Therefore we reserve the notation XJ, i = 1, 2 , . . . , n, for the
quadratic polynomials from Rn to R that satisfy the equations

(7.2)

318 M. J. D. POWELL

where 6ij is the Kronecker delta. It follows that $ is the function

(7.3)

The main advantage of quadratic over linear polynomials is that quadratics
include some second derivative information, which allows the development
of algorithms that have useful superlinear convergence properties. We are
going to consider some of the ideas proposed for constructing and apply-
ing quadratic approximations to F when there are no constraints on the
variables.

The algorithm of Winfield (1973) not only employs the interpolation equa-
tions (7.1) to define <J>, but also it includes some of the earliest work on trust
regions. The fcth iteration of that method is given all the values of the ob-
jective function calculated so far, n of them being obtained before the first
iteration. Let these values be Ffa), i = 1, 2 , . . . , h, where h>n, let xk be a
best vector of variables, which means that it satisfies the conditions

xk€{vi--i = l,2,---,n} and F{xk)<F{v^, i = l , 2 , . . . , n , (7.4)

and let the current data be ordered so that the sequence of distances ||uj-^fe||,
i = 1,2,..., n, increases monotonically. Then the A;th iteration generates the
quadratic polynomial $ by trying to interpolate the function values of only
the first h terms of the sequence, in accordance with the notation (7.1).
Further, the iteration calculates the vector xGRn that minimizes <J>(x) sub-
ject to the bound ||x — xk\\ < pk, where the trust region radius is chosen
automatically and satisfies pk < 0.99 \\vh — xk\\, in order that the value of
F at the new point will be included in the interpolation conditions of the
(A;+l)th iteration. One reason for mentioning the algorithm is that it acts
in an enterprising way when the system (7.1) is degenerate. Specifically,
the degeneracy is ignored, it is assumed that the calculation of $ is suffi-
ciently robust to provide a quadratic function that allows the trust region
subproblem to be solved, and the resultant x receives no special treatment.
Thus some unpredictable changes to the variables occur that may remove
the degeneracy after a few iterations. Indeed, Winfield (1973) states that
'This natural cure of ill-conditioning is more efficient than restarting the
algorithm by evaluating F(x) at the points of a grid'. The other methods
that we study, however, ensure that each $ is well defined.

The Lagrange functions that have been mentioned provide a convenient
way of avoiding singularity in the equations (7.1). The technique suggests
itself if one tries to modify the algorithm of Powell (1994) for unconstrained
optimization, described in the previous section, so that the linear polynomial
$ of expression (6.1) is replaced by the quadratic polynomial that is defined
by the equations (7.1). We retain from Section 6 the parameters Ak and

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 319

Pk, k = 1,2,3,.. . , and the rules that give their values. Moreover, in the
quadratic case, the points v^ i = 1, 2 , . . . , n, for the first iteration can be
the vertices and the mid-points of the edges of a nondegenerate simplex in
R™, where the lengths of the edges are still of magnitude Ai. Otherwise, for
k>2, these points are chosen by the previous iteration, and xk satisfies the
conditions

xkE{vi:i = l,2,...,n} and F(x f e)<F(vJ , i = l , 2 , . . . , n . (7.5)

Further, v^+1— xk is still a 'minimization step' if y_h+\ 1S the vector | e M n

that minimizes $(x) subject to \\x — x_k\\ < pk, which is the trust region
subproblem of the previous paragraph. On the other hand, a 'simplex step'
is usually required if the previous iteration generated a minimization step
that failed to reduce the least calculated value of F. In this case, guided
by equation (6.7), we let I be an integer in [l,n] that maximizes ||u£ —£fc||.
If this distance is unacceptably large, then we have to pick a point Vh+i
that will replace v^ in the system (7.1) on the next iteration. Therefore we
require a formula that is analogous to expression (6.8), and that is suitable
when $ is a quadratic polynomial.

Now the main property of the point (6.8) is that it maximizes the volume
of the simplex of the next iteration subject to ||vn+2~^fell ^ ^k- Further,
the volume of the simplex is a constant multiple of the modulus of the
determinant of the matrix of the system (6.1), when the usual basis of the
space of linear polynomials is employed. Therefore an analogous choice of
the 'simplex step' when 5> is quadratic would maximize the modulus of the
determinant of the hxh system (7.1), after v^ is replaced by v_n+ii where
1Lh+i n a s to satisfy ||t>ri+i~x_k\\ < Ak. We write x = vfl+i for the moment, we
regard the new determinant as a function of x £ M.n, and we find that it is
a quadratic polynomial in x. Further, the determinant must vanish if x is
any point of the set {«, : i = 1,2,.. . , h} that is different from v^. Thus an
elementary normalization provides the identity

New determinant / Old determinant = xe(x), ieR™. (7.6)

Therefore we define Un+i~%k t ° be a 'simplex step' for the chosen integer
£E [1, h] if and only if vA+1 is a vector of variables x that maximizes |x^ (•£)!
subject to \\x — xk\\ < Afc. This definition has the advantage of being inde-
pendent of the choice of basis of the space of quadratic polynomials. Further,
the simplex step can be calculated by solving two trust region subproblems
of the type that has been encountered already. Indeed, if two vectors of
variables are generated by minimizing the quadratic functions xe a n d ~Xe
subject to the trust region bound, then the required v^^ is the vector that
gives the larger value of \\e\-

When the kth iteration tries to take a 'simplex step', the algorithm may
find that all of the points v_i, i = 1,2, . . . , n , are sufficiently close to x_k,

320 M. J. D. POWELL

which corresponds to the condition \\v£ — xk\\ </3Afc in Section 6. Then a
test for near-degeneracy of the system (7.1) is required, that is analogous
to the use of ag and a in the paragraph that includes equations (6.7) and
(6.8). There the replacement of v^ by the point (6.8) increases the modulus
of the determinant of the system (6.1) by the factor Afc/cr̂ . Therefore we
continue to let a < 1 be a positive constant, for instance a = 1/4, and we
seek an integer £ in [l,re] such that the replacement of v# by v^^ increases
the modulus of the determinant of the system (7.1) by a factor of more than
I /a , where v_h+\ ls denned at the end of the previous paragraph, because
this choice maximizes the modulus of the new determinant. Specifically, the
test for near-degeneracy in the quadratic case is as follows. The integer £
runs through the set {1 ,2 , . . . , h}, but similar tests on recent iterations may
make it advantageous not to begin with £ = 1. For each £, the maximum
value of |x̂ G*OI) l|3i~2ifcll < Afc> is calculated. If 1x̂ 0*01 > I / a occurs, the task
of searching for a suitable £ is complete, because the replacement of Vg by
the vector Vft+i that has been mentioned provides a substantial improvement
to the positions of the interpolation points. Then v.fi+i~ xk is a 'simplex
step', and the function value F(v_fl+i) is required for the system (7.1) of the
next iteration. Otherwise, if no integer I in [l,n] provides |x^(v^+1)| > l / a ,
then, as before, we say that the current interpolation points are 'acceptable',
and the iteration may generate 2Zn+i by a 'minimization step'. We also
retain the rule that the minimization step is abandoned if it fails to satisfy
ll^n+i~^fcll ^ Afc> which is important to the criteria for reducing A^ and for
termination, as described in Section 6.

We let each choice between a 'minimization' and a 'simplex' step in the
quadratic case be the same as in Section 6, the rules listed on pages 314-
315 being applied as before. A modification is needed, however, to the
technique that selects the interpolation points for the (/c + l)th iteration,
after -F(^ + 1) has been calculated and vft+1 — x_k is a minimization step.
These points are all but one of the vectors v^, i = 1, 2 , . . . , n + 1, and again
we let v_g denote the point that is rejected. Here it is important to note
that, in contrast to the previous two paragraphs, vft+1 is now independent
of £, because it is generated by the minimization step before £ is chosen.
In order to retain a best vector of variables so far, we let i* be an integer
in [l ,n + l] such that F(v_im) is the least of the function values -F(uJ, i =
l , 2 , . . . , n + l . Then the value £ = i* is prohibited, because xk+1 is going to
be the point u i t . It would be straightforward to pick the £ that maximizes
the modulus of the determinant of the system (7.1) on the next iteration if
we wished to do so. Indeed, if £E [l,n], then it follows from the identity
(7.6) that the determinant of the new system is the determinant of the
present one multiplied by xK^n+i)- Therefore, after defining 0fi+\ = 1 and
0i = Xi(^n+i)> i = 1, 2 , . . . , n, and then replacing 8^ by zero, we would let
£ satisfy the equation |#^| =max{|#j | : i = 1, 2 , . . . ,n + l } . This notation

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 321

provides an analogy with the statement made immediately after expression
(6.12). Again, however, we prefer to take the distances ||UJ — aifc+i||, i —
1,2,... ,h, into account, so our choice of £ is derived from a condition that
is analogous to inequality (6.13).

Specifically, if % is any integer in [l,n] such that ||Uj — azfe+1|| > Ak occurs,
we make a notional shift of Vi to vi, say, which is a point on the line segment
from xk+1 to Vj that is within distance Ak of xk+1. Further, we let Xi be
the quadratic polynomial that satisfies the Lagrange conditions Xi{v.i) = 1
and Xi{v_j) = ̂ i for every integer j in [l,n] that is different from i. Hence Xi
is the function

Xi(x) = Xi(x)/Xi(Vi), xeRn. (7.7)

Now, because of the inequality \\v_i—xk+1 \\ > Ak, we assume that the tempor-
ary replacement of Vj by t^ would make the determinant of the system (7.1)
more relevant to our consideration of possible near-degeneracy. Therefore
we change the value of #,, given in the previous paragraph, to the number
Xi(Hh+i) =Xi(Hh+i)/Xi(v.i), but there is still some freedom in the position
of vi. We have to avoid positions that are too close to other interpolation
points, and it is easy to make |xi(#i)| as large as possible, because Xi *s

a quadratic function of one variable on the line segment from xk+1 to vi.
On the other hand, it would be unsuitable to allow |xi(uj| to exceed one,
because then ||VJ —xfc+1|| > A^ would assist the retention of v^ in the set of
interpolation points. These remarks lead to the formula

î = Xi(Vft+i)/min[l,max{|xi(xA.+1+a[ui-xfc+1])| :0<a<<5}], (7.8)

where a = Ak/\\vi—xk+1\\. Further, this choice is just #i = Xifei+i)> as before,
when i is any integer in [l,n] that satisfies i ^ i* and ||WJ —x^+1|| < Ak.
Moreover, 6n+i = 1 is the most reasonable scaling factor to apply to the
determinant when there is no change to the interpolation points. Therefore
we recommend these values of 9{, and, after replacing 6im by zero, we let £
be an integer in [l ,n+l] that maximizes \6i\.

We have found that, due to the identity (7.6), Lagrange functions are
highly useful for selecting points vi: i = 1, 2 , . . . , n, such that the quadratic
polynomial $ is well defined by the equations (7.1). I presented a paper
on this technique at the '5th Stockholm Optimization Days' in 1994, but I
did not write a report on it then, because I had hoped that the technique
would be developed further by a research student. Later I encouraged an-
other research student, namely Evan Jones, to study the subject, and he
proposed the two trust region radii, namely A^ and pk, that are introduced
in Section 6, although there is only one trust region radius in the algorithm
of Powell (1994). He investigated numerically whether or not the number of
iterations is reduced by including a second trust region radius, and usually
some improvements occur. In any case, the idea is attractive, because it

322 M. J. D. POWELL

allows some large changes to the variables to co-exist with the security of
never increasing Afc as k advances. Therefore I described the method, and
showed some preliminary numerical results, at the '5th SIAM Conference
on Optimization' in 1996. I had expected Jones to write a paper on his
work, but unfortunately that has not happened either. Therefore one of the
reasons for the present contribution to Ada Numerica is to catch up on the
recording of this work.

Another description of the use of Lagrange functions is given in Section 4
of Conn, Scheinberg and Toint (19976), which includes a generous acknow-
ledgement to the conference talks mentioned in the previous paragraph.
That paper also addresses the idea of employing 'Newton fundamental poly-
nomials' instead of Lagrange functions, where these polynomials in the quad-
ratic case are a constant Lagrange polynomial, n linear Lagrange polyno-
mials, and ^n (n+ l) quadratic Lagrange polynomials that are derived from
one, n+1 and all of the interpolation points v^, i = 1, 2 , . . . , n, respectively.
They provide a different basis of the n= ^(n+1) (n+2)-dimensional space of
quadratic polynomials, which is helpful when fewer than n values of F are
available to determine $. An outline of a trust region algorithm for uncon-
strained minimization without derivatives is given too. A major departure
from the work of this section is that, if the kth iteration takes a 'minimiza-
tion step' that reduces F by an amount that compares favourably with the
corresponding reduction in $, then Afc+i is allowed to be larger than Afc.
Nevertheless, this trust region radius is reduced only when the positions of
the interpolation points satisfy acceptability conditions that are similar to
the ones specified in the complete paragraph that follows equation (7.6).
Therefore, in comparison with the technique of Jones that employs both Afc
and pfc, several extra function values may occur if the larger trust region
radius is successful for only a small number of iterations. An earlier paper
by Conn, Scheinberg and Toint (1997a) also considers Newton fundamental
polynomials and presents an outline of a similar trust region algorithm.
Further, the convergence property of the algorithm is studied under certain
assumptions, including the uniform boundedness of the second derivative
matrices V 2 $. It is proved that, if the number of iterations is infinite, then
the property liminffc^oo ||VF(xfc)||=0 is achieved.

The last topic of this section is the algorithm of Elster and Neumaier
(1995), which is designed for optimization calculations subject to the simple
bounds (3.1) on the variables. The algorithm is remarkable, because it com-
bines quadratic approximations to F and trust regions with some of the
properties of discrete grids that are considered in Section 3. Thus termin-
ation is achieved, even if the values of the objective function are distorted
by noise. There is a close analogy with the two trust region idea of Evan
Jones, because it is appropriate to let pk be the trust region radius and Afc
be the grid size. The algorithm retains all the calculated values of F. Then

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 323

each quadratic approximation $ is formed by least squares fitting to some of
them, using a technique that is interesting, because it begins by generating
a Hessian approximation G, and then it restricts attention to only about
2n+2 function values, in order to fit the parameters a € l , geW1 and
of the approximation

*(z) = a + gT(x-xk) + \n(x-xk)
TG{x-xk), i e l n , (7.9)

where xk is still the vector of variables that provides the least value of F
so far. The algorithm requires $, pk and xk for the calculation of a 'min-
imization step'. Then the new vector of variables at the end of this step
is shifted to the nearest grid point, x+ say. The use of grids ensures that,
after only a finite number of iterations, the function value F(x+) will have
been found by an earlier iteration. When this happens, or when three con-
secutive minimization steps fail to achieve F(x+) < F(xk), a procedure is
invoked that is similar to a 'simplex step'. The procedure derives and may
apply a linear polynomial approximation to F, using values of the objective
function at grid points that have to be neighbours of xk. Thus the decision is
taken whether or not to reduce A^ before resuming the minimization steps.
Alternatively, as in Section 6, termination occurs if a reduction in A^ is
required but Afc is already at a prescribed lower bound. Several numerical
experiments in Elster and Neumaier (1995) show that this algorithm com-
pares favourably with the method of Nelder and Mead (1965), and with a
finite difference implementation of a quasi-Newton algorithm.

8. Simulated annealing

The algorithms that we have studied so far are designed to converge to a local
minimum of the objective function F(x), xeM.n, subject to any constraints
on the variables. Many practical optimization calculations, however, have
several local minima that are not optimal. Therefore some methods that se-
lect vectors of variables using random number generators have become very
popular for a wide range of applications. Usually they possess the property
that, if there are no constraints, if the objective function is continuous and
has bounded level sets, if its least value is F(x*), and if e is any positive
number, then, as the number of random vectors tends to infinity, there is
probability one of choosing an x that satisfies F(x) < F(x*) + e. Two ap-
proaches of this kind, namely 'simulated annealing' and 'genetic algorithms'
are highly active fields of research, and the procedures that have been de-
veloped are employed often in practice. Indeed, the books by van Laarhoven
and Aarts (1987) and by Goldberg (1989), respectively, both contain more
than 200 references.

Genetic algorithms require a one-to-one correspondence between strings
of binary digits and vectors of variables in finite precision arithmetic. Thus

324 M. J. D. POWELL

there is a value of F(x), x 6 K n , for each string. An iteration constructs a
new set of m strings from a given set of m strings, where m is a parameter,
the value m = 100 being typical. New strings are generated in pairs, where
each pair is derived from two 'parents' that are picked randomly from the
given set. The random choice is biased towards better values of the objective
function, so a string can be a parent more than once during the iteration,
which provides some 'natural selection'. Further, some randomness also
occurs in the procedure that breeds two children from the binary digits of
their parents. Hence it is difficult to relate the actual changes of variables to
the original optimization calculation. On the other hand, several properties
of the simulated annealing method have interesting explanations in terms of
the objective function and the sequence of iterations. Therefore that method
will be considered in the remainder of this section.

The simulated annealing procedure is analogous to the cooling of a liquid
to a solid state, starting at a high temperature. When the liquid is hot,
very many changes of state can occur, which correspond to many changes
of the variables of an optimization calculation, that are allowed to make the
objective function worse. Then the energy of the system is lowered, and, if
the rate of cooling is sufficiently slow, the liquid should become frozen in the
state of least energy, the analogy in the optimization calculation being the
required global minimum. An algorithm requires a weighted list of possible
changes from one state to another. Moreover, the probability that a change
is made depends on the objective functions of the states and on a parameter
that corresponds to temperature. The following paragraph gives a method
that applies these ideas in the discrete case when x is restricted to a finite
set X c W1 that has m elements, say. In practice, m may be the number of
different routes that can occur in the travelling salesman problem, but it is
instructive to consider much smaller values of m.

Let X be the set {a;W : % = l , 2 , . . . , m } , and let W be a very sparse
m x m matrix of nonnegative real numbers, such that Wij is positive if
and only if a transition from state a;W to x}^ is allowed for high enough
temperatures. The transition is more likely if Wij is larger, and we assume
the normalization

m

ij = l, i = l,2,...,m. (8.1)

The method requires these weights, a starting point x^ 6 X, and a positive
parameter T, which is the initial value of the temperature. For k = 1, 2 ,3 , . . . ,
the vector of variables xk is revised to xfc+1 in the following way. Let q be
the integer in [1, m] that satisfies x^ = xk. An integer p is picked at random
from [l,m], where the probability of choosing p is Wqp. The new vector
xk+l is always x^ in the case F(x(p)) <F(x^). Otherwise, the new vector

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 325

is either x^ or x^, the selection being random with the probabilities

exp {-[F(x(p))-F(x^)]/r} or 1 - exp {-[F(x^)-F(x{
(8.2)

respectively. Occasionally an iteration may reduce the value of T, by ob-
serving some rules that are considered later. These rules also provide a
condition for terminating the sequence of iterations.

We consider the probability that xk+1 is equal to xjl\ when the positive
number T is not altered in the algorithm that has just been described.
For convenience of notation, we assume without loss of generality that the
sequence F(x^), i = 1,2,..., m, increases monotonically. Therefore, if xk =
xp\ then xk+l = x^ occurs with probability Pij, where P is the mxm
matrix with the elements

{
Wjj + Efci+i Wjt (1 - exp {-[F(xW)-F(x

W exp {-[F(xW)-F(x&)]/T} ,
(8.3)

except that the sum is suppressed in the case i=j = m. It follows that, if v_k

is the vector in Mm whose jth. component is the probability that xk = x^)
holds, where j is any integer in [1, m], then the ith component of the product
vk+i — Pvk is the probability that xk+1 is equal to #W. Further, if s is the
integer in [l,m] such that xx is x_(s\ and if es is the sth coordinate vector
in M.m, then we deduce the formula

vk = Pk~1ea, k = l,2,3,.... (8.4)

Now the property

1 | ^ i l = E ^ i ^ = l : i = l ,2 , . . . ,m} = l (8.5)
implies that the spectral radius of P is at most one, and in fact it equals
one, because of the eigenvalue equation eTP = eT, where the components
of e £ Rm are all one. Moreover, we make a nondegeneracy assumption
that is suitable for the present application, namely that there is only one
eigenvalue of P with modulus equal to the spectral radius. Hence, if v* €
Rm is a nonzero solution of Pu* = H*, then the sequence of vectors (8.4)
converges to a multiple of v# as k —> oo. Further, because every vector in
this sequence is nonnegative and has components that sum to one, the limit
of the sequence has these properties too. It follows that we can normalize
v^, so that its components also sum to one, and then formula (8.4) provides
limfc-xxjWfc = Vj,, for every choice of the integer s. Therefore the limiting
behaviour of the algorithm of the previous paragraph is that the states x^,
i = l,2,... ,m, occur with probabilities that are equal to the corresponding
components of the nonnegative vector u+.

326 M. J. D. POWELL

Let (v)i denote the zth component of uGl™. When T is small, it is usual
for (vj)i to be of magnitude exp{-[F(x^)-F(x^)]/T} for i = 1, 2 , . . . , n. It
follows from the previous paragraph that the simulated annealing algorithm
is likely to pick the state x^\ which is the optimal vector of variables. A
way of making the assertion about magnitudes plausible depends on the
mxm diagonal matrix D with the diagonal elements exp{—F(x^)/T},
i = 1, 2 , . . . , m. Specifically, we define vt G W1 to be the positive multiple
of D~^yJf that satisfies \\vj\2 = 1, we deduce from the eigenvalue equation
Pv*—V.* that v^ is an eigenvector of the matrix Q = D~lPD with eigenvalue
one, and we find that expression (8.3) provides the elements

exp{-[jf{x^')-f[g

+ \ \Al• i) I 1 PYTJ < \~P*\T\
/ J P 7'-1-1 • ' 7 c V v^-A-J-J I \J- \ JU

" (8.6)
Thus, if T —>0, the matrix Q remains bounded, and each element Qij with
i<j tends to zero in the usual case when the inequality F(x}1') <F(x^) is
strict. Further, the first row of Q tends to be a multiple of the coordinate
vector ej if F(x^) is less than F(xj2^). Now, because Q is similar to P,
the nondegeneracy assumption of the previous paragraph implies that all
but one of the eigenvalues of Q have modulus less than one, so, apart from
scaling by a constant, v* is the only eigenvector of Q with eigenvalue one.
These remarks suggest that (v*)i may remain bounded away from zero as
T—>0. Further, the nearly upper triangular structure of Q and the equation
Q V.* = V.* make it possible that none of the components of v* tends to zero
as T —> 0. Then the magnitudes of the components of v_* can be derived
from the fact that v* is the multiple of D v, whose components sum to one,
which yields the assertion under consideration.

When F is a function of one variable, and when X contains m different
real numbers x^\ i = 1,2,.. . , m, then a typical choice of the matrix W lets
Wij be nonzero if and only xii^j and there are no elements of X between
the numbers zW and x^\ Further, it lets the nonzero elements in each row
of W be the same. Hence, if a and (3 are the integers in [1, m] such that xja^
and x^ are the least and greatest elements of X, respectively, then the ath
and /3th rows of W each contain only one nonzero element, which has the
value 1, while the other rows of W each contain two nonzero elements, and
they have the value 1/2, in accordance with equation (8.1). The reason for
mentioning this example is that it provides excellent corroboration for the
suggestions in the previous paragraph. Indeed, it is straightforward to show
that the vector v G Rm that has the positive components

i = l , 2 , . . . , m , (8.7)

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 327

satisfies the eigenvalue equation Pv = v. Therefore v* is the multiple of y_
whose components sum to one, which agrees completely with the sugges-
tions.

It can also happen that the limit (8.4) is unhelpful to the calculation of a
global minimum. For example, we consider the case when n = l, m = 4 and
x_w ={: i = 1,2,3,4, but we depart from the previous ordering of points of
X by picking the function values

F(x(2)) = = l and (8.8)

Further, we let each row of W have two elements of zero and two elements
of 1/2, where
neighbours of

= 1/2 occurs if and only if x
. Thus P is the matrix

is one of the two nearest

P =

i-¥-¥3 \

\
¥
0

1
2

0

0

¥2

\-\9-\92

¥

¥
2

1 1,

(8.9)

where 9 denotes exp(—1/T).
exact solution

Hence straightforward calculation gives the

v =

/ (2+9)9 \

(2+9)(l+92)92

(2+92)(l+9)

(2+92)9

(8.10)

of the eigenvalue equation Pv = v. Therefore, when T is small, the given
algorithm tends to provide the vector of variables x^, although it is clear
that F(x^) is the least of the function values (8.8). This pathological
behaviour occurs because a transition from the x̂ 1^ state to the x^ state
is more likely than a return from the x^ state to the x^ state, although
F(x^) is less than F(xj3^). Indeed, the return from x^ to x ^ has to be
via x(2\ and the large value of F(x(2)) is obstructive. Therefore it is helpful
if the sparsity structure of the matrix W is symmetric.

The rate of cooling is very important to efficiency, especially when the
starting vector of variables xx 6 X is near or at a local minimum of the
objective function that is not optimal. We address some of the questions
that arise when X is the finite set {x^ : i = 1,2,..., m} as before. Further,
we suppose for convenience that the function values F(x^), i = 1, 2 , . . . , m,
are all different. Therefore it is suitable to define x^> to be a local min-
imum if, for every integer i in [l,m] that satisfies i ^ j and Wij > 0, the
strict inequality F(x^) > F(x^) holds. Because the simulated annealing
method is likely to pick a vector of variables that is a local minimum, and

328 M. J. D. POWELL

because we can regard any xfc+1 as a starting point for the subsequent it-
erations, we address the case when the initial vector Xj = x^ is a local
minimum. Then the probability that x2 is different from x_i has the value
Y7=i,i^s Wisexp{-[F(x^)-F(x^)]/T}, which tends to zero if T^O. Fur-
ther, when x2 *s different from x_x, then the most likely choice of £3 may be
x^ again. These remarks indicate why a fairly large value of T should be
chosen initially.

A suitable way of making this choice automatically is as follows. For each
iteration number k, let the integers p and q be taken from expression (8.2),
so q is denned by x^ = xk, while x&) is the new vector of variables if xk+1

is different from xk. We make use of the remark that F(x^)—F(x}q') — Ak,
say, is independent of T, and we aim for a probability of about 50% that an
iteration will change the vector of variables when a change would increase the
objective function. Therefore, if k is the index of the first iteration that gives
Afc > 0, we define a provisional value of T by the condition exp(—A&/T) =
1/2. Then, on subsequent iterations, the provisional T is revised to an
approximate solution of the equation

Average value of {exp(-Aj/T) :je[l,k], Aj > 0} = 1/2, (8.11)

until the number of values of j in the braces reaches a prescribed amount.
For instance, we may fix the initial T by condition (8.11) when 50 of the
numbers Aj, j = l,2,..., k, are positive, and this T may be used for hundreds
of iterations.

The analogy with the cooling of a liquid motivates some automatic re-
ductions in T, but it has been mentioned that the temperature should
not be decreased too rapidly. Specifically, we require the property that,
if x_i = x(s) is a 'strict local minimum', then the probability of choosing
x.k+1 = x_k on every iteration is zero for k —> 00. Here 'strict local min-
imum' means that, if a single iteration can change the variables from x^
to xje\ then F(x^) > F(x^) holds. The probability of xk+l = xk when
xk = x^ is the Pss element of expression (8.3), assuming the usual ordering
F(xW) < F(x^+lS>), z = 1,2, . . . , m — 1. We also assume the strict inequality
F(x^) <F(x_(s+1)). Therefore, letting Tk be the current temperature, this
probability has the lower bound

- exp { - [F(:r(s+1)) - F(x^)} /Tk

= l-exp(-A*/Tfc), (8.12)

say, the second inequality being valid because the local minimum property
of x^ provides YHLS WSi = 1 • Thus there is zero probability of no change to

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 329

the variables only if the sequence of temperatures Tk, k = 1, 2,3,. . . , satisfies
the equation

nr=i{l-exp(-A,/Tfc)} = 0, (8.13)

which is equivalent to the condition

oo. (8.14)

It follows that the cooling rate is too fast if we let each Tk be of magnitude
1/fc. Indeed, in this case the analytic formula for the sum of a geometric
progression shows that the left-hand side of expression (8.14) is finite.

On the other hand, if Tk is of magnitude 1/ log k for large k, then condition
(8.14) can hold. Specifically, the choice Tk — c/logk, where c is a positive
constant, has the property (8.14) if and only if the integral

/

OO /-OO

exp(-A*c-1log^)d^ = / e x p K l - A . c - 1) ^ (8.15)
Jo

is infinite, where the second integral is due to change of variables t = log 0.
Therefore we require c to be at least A*, and a greater lower bound on
c can allow for the inequalities of expression (8.12). Thus Tk ~ 1/logfc
is the cooling rate that is usually recommended for a simulated annealing
algorithm, as mentioned in van Laarhoven and Aarts (1987).

In practice, however, it is easy to avoid xk = x}s' for every k by not decreas-
ing T until x_k+i is different from xk. Indeed, a typical 'cooling schedule'
would begin by generating T by the method described earlier that satisfies
equation (8.11) for a suitable choice of k. Then, whenever 50 iterations, say,
have provided increases in the objective function for the current T, either
the temperature is multiplied by 0.9 or the calculation is terminated, the last
action being taken when T is sufficiently small. Moreover, in the usual case
when the range of the variables x G R" is a continuum instead of a discrete
set X, a technique is required for choosing the vector x^ of the method in
the paragraph containing equation (8.1). It is often suitable to pick x^ at
random from the set {x : \\x_-x_k\\2 <p}, where p is a prescribed positive con-
stant. Then the rules for deciding between the alternatives xk+1 =x^ and
x.k+i = x^ a r e the same as before. There are several computer programs
that apply the simulated annealing method. For example, a program for
the solution of the travelling salesman problem is given in Press, Flannery,
Teukolsky and Vetterling (1986).
9. Discussion
Usually it is very difficult to discover general convergence theorems for al-
gorithms for nonlinear optimization that perform well in practice, especially
when first derivatives are not available. Therefore I have always supported
the view that new algorithms should be developed from ideas for techniques

330 M. J. D. POWELL

that may provide improvements to actual calculations. Further, as well as
trying the techniques in numerical experiments, in order to find any advant-
ages over other methods, it is important to study what can go wrong. Such
research is hardly ever conclusive, and the outcome may be an algorithm
that compares favourably with other procedures on a range of test prob-
lems, but that fails occasionally. Many papers on such work are published
in journals and even more are rejected. On the other hand, the literature
also includes several descriptions of algorithms that are designed so that con-
vergence properties can be proved, which rules out methods that allow the
construction of examples that show failure. In particular, both the proced-
ure that makes exact line searches along coordinate directions recursively
and the method of Nelder and Mead (1965) are excluded, because of the
counter-examples that are mentioned in Sections 2 and 4, respectively. In-
deed, there seems to be hardly any correlation between the algorithms that
are in regular use for practical applications and the algorithms that enjoy
guaranteed convergence in theory, although advances on the theoretical side
should influence the development of software for optimization calculations.
We will consider the methods of Sections 2-8 in the light of these comments.

The convergence theory of Section 2 presents a result that is not well
known. It is that the conditions (2.3) and (2.8) on the search directions and
step-lengths, respectively, can ensure that liminf{||VF(xfc)|| : k — 1,2,3,...}
is zero in exact arithmetic, provided that the objective function has continu-
ous first derivatives and the sequence xk, k — 1,2,3,.. . , has a limit point.
This property is achieved by a method that requires the positive parameters
/3fc, k = 1, 2 , 3 , . . . , that are introduced just before expression (2.8), but the
need for these data is objectionable. Indeed, if the parameters are not su-
perfluous, then they fix some important decisions about step-lengths before
all or most of the values of the objective function are calculated. Instead it
would be reasonable to generate the parameters automatically as the itera-
tions proceed, which would also assist the use of the algorithm. We explain
this remark by assuming that F(xp)—F(x*) is less than >yf3p at the beginning
of the pih iteration, where F(x*) is the least value of the objective function.
Then the first line of expression (2.8) implies ||adp||2 <PP, but the procedure
in Section 2 sets the step-length ap to zero in this case. Further, if q is the
number of the next iteration that changes the variables, then x_q = x_p and
7/5| < F(x_p)—F(x*) must hold, while the iterations with numbers k G [p, q—1]
each calculate at least one value of F(xk+adk), although they cannot alter
the current vector of variables until jPk is reduced to at most F(xp)—F(x*).
Therefore it is suitable to pick (3k+i < 0k during these iterations, and to set
0k+i=Pk in the case xk+l ^xk, but 0k+i=Pk may be safer than /3k+i<0k
if the reason for xfe+1 = xk is that dk is practically orthogonal to the un-
known gradient V_F(xk). Thus the initial choice of /3^, fc = l , 2 , 3 , . . . , may
be avoided, by letting 0k+i depend on f3k and available values of F, which

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 331

is like the adjustment of trust region radii in trust region algorithms. Fur-
ther, if the differences (3k~0k+i are sufficiently parsimonious, then it may
be possible to replace both parts of expression (2.8) by the single condition

F{xk+adk)<F{xk)-1(3l if a^O, (9.1)

with the proviso that the step-length is set to zero only if inequality (9.1)
fails in the case a = /3fc/||dfc||2- These remarks suggest that some useful
convergence properties can be achieved in a line search method, by using
search directions that satisfy expression (2.3), and by introducing one or two
trust region ideas into the control of step-lengths.

The discrete grid methods, considered in Section 3, are both an inspiration
and a target for adverse criticism. The analysis of convergence given there
justifies the title 'Direct search methods: once scorned, now respectable' of
Wright (1996). Moreover, if the set {x : F(x) ^F^)} is bounded and if the
mesh size does not change, then eventually a vector of variables is generated
that has occurred already during the calculation, which is useful, because
this situation can activate operations like reductions in the mesh size, as
stated in Section 3 and in the last paragraph of Section 7. On the other
hand, examples like the minimization of the function

F(x) = F(xi,x2) = (z i -z2+0.2)2 + l(r4Ori+Z2 + 77)2, x G l 2 , (9.2)

cause some consternation. Specifically, if the points of the grid are all vectors
whose components are integers, and if F(0,0) = 0.6329 has been calculated,
then the best grid point so far has to satisfy x\ =X2- Therefore it cannot
be one of the four neighbours of (0,0). Further, the least value of the
continuous function (9.2) occurs at (xi, 22) = (—38.6, —38.4), and the nearest
grid point is (—39, —38), which gives a function value that exceeds F(0,0).
Thus the use of discrete grids can impair the efficiency of the algorithm
of Elster and Neumaier (1995), for example, even when F is quadratic.
These disadvantages of restricting the vectors of variables to discrete grids
are well known, so 'respectability' has been achieved by the recent work on
convergence theory.

I have never liked the simplex methods of Section 4, because it seems
very wasteful to make changes to the variables in ways that depend only on
the signs of differences between calculated function values, the magnitudes
of the differences being ignored. Therefore I was surprised to be told more
than ten years ago that the Nelder and Mead (1965) algorithm is the method
for unconstrained optimization that is used most often. I was even more sur-
prised to learn later about the cases of failure that are reported at the end
of Section 4. These remarks provide a clear demonstration that there is a
strong need for easy-to-use algorithms that are more reliable. New proced-
ures are proposed occasionally. For example, Kelley (1997) has developed
an 'oriented restart' technique that replaces the current simplex by a more

332 M. J. D. POWELL

suitable one automatically, when the current simplex is found to be nearly
degenerate. Another possible way of avoiding collapse is to confine all the
vertices of all the simplices to a discrete grid. Then it may be possible to
generalize equation (4.2) to the formula

n+l
(9.3)

where the multipliers #, are nonnegative and sum to one. Thus the next
vector of variables can depend on the actual values of the objective function
at the vertices of the current simplex, which may provide better efficiency
in typical applications.

The conjugate direction method of Powell (1964), described in Section 5,
is another algorithm that has been in regular use for more than 30 years.
When I developed it, I was concerned about the choice of m in the paragraph
containing expressions (5.9)-(5.13), because the given procedure may not
retain those search directions that have already been given the required
conjugacy properties in the quadratic case. Then I took the view that it was
possible to secure convergence by using search directions that span the full
space of the variables. However, we now know, from the example in the third
paragraph of Section 2, that even condition (2.3) on an infinite sequence of
search directions does not guarantee liminffc^oo ||V-F(a;fc)|| =0 , when the line
searches are exact, although F can be very smooth with bounded level sets.
Therefore, because sufficiently accurate line searches are vital to the given
techniques that achieve conjugacy, the convergence properties of conjugate
direction methods deserve further attention. It is possible that our remarks
on inequality (9.1), that suggest a zero step-length if the inequality fails,
may be helpful.

The first version of the method in Section 6 was developed for Westland
Helicopters, in order to solve a range of optimization problems that each
have about 4 variables and 10 constraints. It was anticipated correctly
that, due to the tiny number of variables, the inefficiencies that arise from
linear approximations to the objective and constraint functions would be
tolerable. An easy-to-use Fortran program was written that implements
the algorithm of Powell (1994), and it is available from the author. The
program is very slow, as expected, when there are no constraints, because
of the importance of the curvature of the objective function. On the other
hand, linear approximations to constraints are usually excellent for reducing
the freedom in the variables in a suitable way. We address one convergence
question, namely whether the method of Section 6 terminates if only a finite
number of iterations cause xk+1 to be different from xk. This assumption
is reasonable because of the limited precision of the computer arithmetic,
and because xk+1 ^xk requires the strict inequality ^(x_k+1) <ty(xk), where

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 333

\£ is the merit function (6.14). We give careful attention to the rules listed
on pages 314-315, remembering that the number of reductions in Ak is
also finite. Thus we find that termination does not occur if and only if
the situations (5) and (6) are not reached during an infinite number of
consecutive iterations, and we suppose that termination fails in this way.
Then A& is independent of k, and the above assumption allows xk to be
independent of k too, without loss of generality. In other words, no iteration
improves the best vector of variables so far, which excludes rule (1). The
number of minimization steps is infinite, however, because otherwise every
step would be a simplex step eventually, which would give a contradiction,
due to the increases in the volume of the simplex after the inequality

max{||^-xfc|| : i = l ,2 , . . . ,n+l}</3A f c (9.4)

is achieved. Therefore the trust region radius pk is reduced until pk = A^
holds for all sufficiently large k. Then f3 > 1 implies that a minimization
step does not increase the number of integers i in [l,n + l] that satisfy
\\v.i~3Zfcll >/3 Afc, nor does it diminish the volume of the simplex, although a
nonoptimal vertex of the simplex may be changed. It follows that the volume
of the simplex would become unbounded if the number of simplex steps were
infinite, so rules (2) and (3) are also irrelevant for large k. Therefore every
simplex becomes acceptable. Further, we deduce from pk = A& that there
are no more 'questionable' minimization steps. Thus rule (4) is excluded
too, which completes the proof of termination. One purpose of this analysis
is to justify the given rules. In particular, lack of termination would be
prevalent if the last proviso of rule (4) were deleted, because it is usual for
the minimization step to satisfy ||̂ n+2~Sfcll =Pk when $ is a linear function.

The analysis of termination in the previous paragraph applies also to the
algorithm that is the main subject of Section 7. Further, we can generalize
that algorithm by letting $> be an approximation to F from any prescribed
finite-dimensional linear space of functions from R™ to R, say A. Then n is
the dimension of A, and each iteration begins with points vt, i = 1, 2 , . . . , h,
such that the equations (7.1) define $ uniquely. Therefore A includes car-
dinal functions \i, i = 1,2,..., n, derived from the conditions (7.2) as before.
Further, all the uses of the cardinal functions in Section 7 are preserved, in-
cluding the definition of the 'simplex step'. In particular, if A is the (n+1)-
dimensional space of linear polynomials, then the generalization reduces to
the method of Section 6 when there are no constraints. A choice of A that
is between the linear polynomial case and the h= \{n-\-\) (n+2) quadratic
polynomial case has been suggested by Philippe Toint (private communica-
tion), and I expect it to be highly useful. It is relevant when F has the form

t

(9.5)

334 M. J. D. POWELL

where each of the functions Fj, j = l,2,..., t, is independent of most of the
components of x. Then we let S be the set of pairs of integers {p, q} from
[1, n], such that {p, q} is in S if and only if no Fj depends on both xp and
xq. Alternatively, if F is twice differentiate, then we pick the set

S = {{p,q}:d2F(x)/dxpdxq = 0}, (9.6)

which may be larger than before. Of course, we let A be the linear space of
quadratic polynomials with the zero second derivatives d2<£(x) / dxp dxq = 0,
{Pi $} £ «S> f°r every <E> in A. Thus the elements of A are given some of
the sparsity properties of F, and n may be much less than ^(n+1) (n+2),
which would provide large reductions in the amount of routine computation.
Another question that is important to applications is whether the method
of this paragraph can be extended to allow constraints on the variables. It
is straightforward to approximate the constraints cp(x) > 0, p = 1,2,..., m,
by the inequalities jp(x) > 0, p = 1, 2 , . . . , m, where each j p is the element
of A that is defined by the equations 7P(UJ) = CpiHi), i = 1,2,..., n, at the
beginning of the iteration. The calculation of a minimization step would
be difficult, however, if we had to minimize a quadratic function subject to
quadratic constraints. Therefore it may be best to give most attention to
linear constraints for a while. The algorithm of Elster and Neumaier (1995),
for instance, allows simple bounds on the variables.

The simulated annealing method of Section 8 is attractive to many com-
puter users, because it is easy to apply, the amount of routine work of each
iteration is only linear in n, and some theory suggests that it is possible to
find the global solution of several optimization problems. Further, in many
applications, any reduction in the value of the objective function may be
financially rewarding, which does not favour algorithms that stop at a local
minimum. Indeed, the failures of the method of Nelder and Mead (1965)
may seem to be no worse than termination at a local minimum. Of course
these remarks depend on the nature of the application, partly because high
accuracy would be inappropriate for many models of real situations. On
the other hand, there is also a wide range of precise optimization problems
in science and engineering, so there are strong reasons for further develop-
ments of the techniques of Sections 2-7, and it would be good to have some
efficient software for such problems that is attractive to computer users. My
opinion of simulated annealing is that, for small and moderate values of n,
it is highly inefficient to take decisions randomly. Therefore one may be able
to construct procedures that provide similar results much more quickly, in
cases when most of the computing time is spent on calculations of values
of the objective function. Indeed, the importance of global optimization in
practice makes an excellent case for much more work on general algorithms
that need not be trapped by local minima.

DIRECT SEARCH ALGORITHMS FOR OPTIMIZATION CALCULATIONS 335

REFERENCES
R. P. Brent (1973), Algorithms for Minimization without Derivatives, Prentice-Hall,

Englewood Cliffs, NJ.
K. W. Brodlie (1975), 'A new direction set method for unconstrained minimization

without evaluating derivatives', J. Inst. Math. Appl. 15, 385-396.
A. R. Conn, K. Scheinberg and Ph. L. Toint (1997a), 'On the convergence of

derivative-free methods for unconstrained optimization', in Approximation
Theory and Optimization (M. D. Buhmann and A. Iserles, eds), Cambridge
University Press, Cambridge, pp. 83-108.

A. R. Conn, K. Scheinberg and Ph. L. Toint (19976), 'Recent progress in uncon-
strained nonlinear optimization without derivatives', Math. Prog. 79, 397-414.

J. E. Dennis and V. Torczon (1991), 'Direct search methods on parallel machines',
SIAM J. Optim. 1, 448-474.

C. Elster and A. Neumaier (1995), 'A grid algorithm for bound constrained optim-
ization of noisy functions', IMA J. Numer. Anal. 15, 585-608.

R. Fletcher (1987), Practical Methods of Optimization, Wiley, Chichester.
P. E. Gill, W. Murray and M. H. Wright (1981), Practical Optimization, Academic

Press, London.
D. E. Goldberg (1989), Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley, Reading, MA.
L. Grippo, F. Lampariello and S. Lucidi (1988), 'Global convergence and stabiliz-

ation of unconstrained minimization methods without derivatives', J. Optim.
Theory Appl. 56, 385-406.

R. Hooke and T. A. Jeeves (1961), 'Direct search solution of numerical and stat-
istical problems', J. Assoc. Comput. Mach. 8, 212-229.

C. T. Kelley (1997), 'Detection and remediation of stagnation in the Nelder-Mead
algorithm using a sufficient decrease condition', North Carolina State Uni-
versity Report CRSC-TR97-2.

P. J. M. van Laarhoven and E. H. L. Aarts (1987), Simulated Annealing: Theory
and Applications, Reidel, Dordrecht.

S. Lucidi and M. Sciandrone (1997), 'On the global convergence of derivative free
methods for unconstrained optimization', preprint, Universita di Roma 'La
Sapienza', Italy.

K. I. M. McKinnon (1997), 'Convergence of the Nelder-Mead simplex method to a
nonstationary point', preprint (to be published in SIAM J. Optim.).

J. A. Nelder and R. Mead (1965), 'A simplex method for function minimization',
Comput. J. 7, 308-313.

M. J. D. Powell (1964), 'An efficient method for finding the minimum of a function
of several variables without calculating derivatives', Comput. J. 7, 155-162.

M. J. D. Powell (1973), 'On search directions for minimization algorithms', Math.
Prog. 4, 193-201.

M. J. D. Powell (1994), 'A direct search optimization method that models the ob-
jective and constraint functions by linear interpolation', in Advances in Op-
timization and Numerical Analysis (S. Gomez and J-P. Hennart, eds), Kluwer
Academic, Dordrecht, pp. 51-67.

336 M. J. D. POWELL

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling (1986), Numer-
ical Recipes: The Art of Scientific Computation, Cambridge University Press,
Cambridge.

H. H. Rosenbrock (1960), 'An automatic method for finding the greatest or least
value of a function', Comput. J. 3, 175-184.

C. S. Smith, (1962), 'The automatic computation of maximum likelihood estimates',
N.C.B. Sci. Dept. Report SC 846/MR/40.

W. Spendley, G. R. Hext and F. R. Himsworth (1962), 'Sequential application of
simplex designs in optimisation and evolutionary operation', Technometrics
4, 441-461.

Ph. L. Toint and F. M. Callier (1977), 'On the accelerating property of an algorithm
for function minimization without calculating derivatives', J. Optim. Theory
Appl. 23, 531-547.

V. Torczon (1997), 'On the convergence of pattern search algorithms', SIAM J.
Optim. 7, 1-25.

D. Winfield (1973), 'Function minimization by interpolation in a data table', J.
Inst. Math. Appl. 12, 339-347.

M. H. Wright (1996), 'Direct search methods: once scorned, now respectable', in
Numerical Analysis 1995 (D. F. Griffiths and G. A. Watson, eds), Addison
Wesley Longman, Harlow, pp. 191-208.

